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Abstract. This paper is the first of two papers devoted to the study of the Clebsch—Gordan (CG)
problem for the three-dimensional Lorentz groupe801) in an elliptic (or SO(2)) basis. Here

we describe the reduction of the tensor product of two unitary irreducible representations (UIRs)
of the continuous series, i.e. belonging to either the principal or complementary series. The
corresponding CG coefficients are defined as matrix elements of an intertwining operator between
the tensor product representation and the irreducible component appearing in the decomposition.
We then obtain an expression for CG coefficients in terms of a single function, namely in terms
of the bilateral seriesH3(1) with unit argument defined in the complex sp&&gof the variable

J1. j2, j. In the general case thdgi3(1) functions are expressed in terms of two hypergeometric
functionssz F»> with unit argument; however, it reduces to the singl&(1) function if at least

one of the coupling UIRs belong to a discrete series. We derive a completeness relation for CG
coefficients for all the cases under consideration.

1. Introduction

This paper is the first of two devoted to the study of the Clebsch—Gordan (CG) problem for
unitary irreducible representations (UIRs) of the three-dimensional Lorentz grog(2,3Q

in an SO(2) basis. In the present paper we describe the reduction of the tensor product of
two UIRs of the continuous series, i.e. belonging to either the principal or complementary
series. The tensor product of the remaining cases will be studied in the next paper of this
series.

The three-dimensional Lorentz group &2 1) is the most important non-compact Lie
group used so far in mathematics and physics. The UIRs gt5Q) or its double covering
group SU(1,1) were given by Bargmann [1] many years ago. Since the advenyf, 3D
symmetry in relativistic scattering theory and in dynamical symmetry group theory, it has
become necessary to know the CG coefficients for this group.

The CG coefficients of Sg2, 1) in an SO(2) basis have already been dealt with in
certain cases; if the two representations both belong to the positive discrete series, or if
both belong to the negative discrete series, then the CG coefficients have been worked out
by Andrews and Gunson [2] and Sannikov [3]. Holman and Biedenharn [4] derived many
CG coefficients solving a second-order finite-difference equation. Thus their CG coefficient
is not analytically containable to other cases of coupling. Ferreti and Verde [5] worked out

1 On leave of absence from the Institute of Physics, Academy of Sciences, Baku, Azerbaijan.
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the CG series for the tensor product of two principal series with some restrictions on the
‘magnetic’ quantum numbers by using an indirect method initiated by Andrew and Ganson.
This method was later used by Wang [6] who restated their results and also worked on the
remaining cases except that of the complementary series. An (incomplete) study of the CG
problems for the Sg¥2, 1) group in an SO(2) basis is also presented in [7-9].

No author, to the best of our knowledge, has explicitly calculated the CG coefficients for
all possible cases of tensor products of UIRs 0p&D1) in an SO(2) basis. This paper fills
these gaps. The purpose of the present work is to determine the CG coefficients, in a direct
and rigorous manner. We suggest a new method, in which the CG coefficients are defined as
matrix elements of an intertwining operator between the tensor product representation and
the irreducible component appearing in the decomposition. Our task is greatly simplified by
the fact that the intertwining operators and the Plancheral formulae for all tensor products
of UIRs of SQ(2, 1) have already been obtained by Molchanov [10] (for a review, see also
[11,12]).

The contents of this paper are arranged as follows. In section 2 we present all the
mathematical preliminaries and notation necessary for subsequent sections. In section 3
the decomposition of the tensor product of the two principal series representations onto
irreducible representations is described. The corresponding CG coefficients are defined
as matrix elements of operators intertwining the tensor product of principal series and
irreducible components appearing in the decomposition. We then obtain an expression for
CG coefficients in terms of a single function, namely in terms of the bilateral saifigd)
with unit argument defined in the complex spageof the variableji, j», j. This function
is singular on a subset of discrete points@f corresponding to the case when all three
UIRs belong to the discrete series. In the general casgHAB€L) function is expressed in
terms of two hypergeometric functiong’, with unit argument; however, it reduces to the
single 3F»>(1) function if at least one of the coupling UIRs belong to a discrete series.

In section 4 we discuss the tensor product of the complementary series representation
with a representation of the principal series. The tensor product of pairs of complementary
series representations is studied in section 5. We derive completeness relations for CG
coefficients for all these cases under consideration. Some mathematical results necessary
for section 3 are given in appendices A—C.

2. The group SQ)(2,1)

In this section we establish notation and review those properti€s efSQy(2, 1) that we
will need later. For a more detailed treatment®fwe refer to [1,11-13].

The groupG is the connected component of the group of proper linear transformations
of a three-dimensional pseudo-Euclidean spR&é which preserves the bilinear form

[x, y] = x1y1 + x2y2 — x3y3. (2.1)
Every elemenfg of G can uniquely be factorized into

8 = hzayky (2.2)
each factor constituting a sub-group @f They are explicitly given by

cosht 0 sinht 1 0 0
hT=< 0 1 0 )eH a,7=<0 coshy sinhn)eA

sinht 0 coshe 0 sinhp coshy
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cosf sind 0
ko = (—sin@ cosH O) e K.
0 0 1

We shall considelG as acting onkR%? on the right. In accordance with this we shall
write the vector in row form.

The groupG acts transitively on the one-sheeted hyperbolie= {x € R>! : [x, x] =
1}. An invariant measure oX is dx = dx;dx,/|x3|. The decomposition (2.2) tells us that
the hyperboloidX can be parametrized by coordinatg® as follows

and

=Y, = (0.1.0)

wherea, = a,kq. It is also worth noting thaX is isomorphic to the co-set spatkG.

The generators of the Lie algebra 6fare denoted by, J», J3. HereJ, J, are the
generators of the pure Lorentz transformatiénsa, along the 1 and 2 axes, respectively,
and J; is the generator of rotationk in the 1,2 plane. The unitary faithful irreducible
representations af are infinite-dimensional. All such UIRs are labelled by the eigenvalue
of the Casimir operato@ = Ji +J3 — J5 = —j(j + 1), whereJ;, J,, J; are the Hermitian
operators corresponding th, J2, Js, respectively, in the Lie algebra representatidg.is
elliptic, J1, J> hyperbolic. When we use a SO(2) basls,will be the preferred generator.

The eigenvalues ai; will be denoted bym.

We now give the spectrum of corresponding to UIRs and eigenvalues of the
operatorJs in each such representation. (For the purposes of this paper we only consider
the single-valued representations.)

(i) Principal serieSTip_%:

j:—%—i—ip 0<p <@ m=0,=%1 +2,....
(i) Complementary serieg,:

j=1 —1<r<—% m=0,=+1,£2, ....
(iii) Positive discrete serieg;":

j=1 1=0,1,2,... m=1+11+2,....
(iv) Negative discrete serieg™:

j=11=012,... m=—1—-1-1-2,....

Any UIR of G is equivalent to some sub-representation of an elementary representation
T;, j € C. They occur as unitarizations of elementary representations or as unitarizations
of quotients of such representations.

Let us recall some facts about the elementary representations of the Grouthe
representationd;, j € C, can be realized in the space of the infinitely differentiable
function £ (x) on the upper sheet of the two-dimensional cafer x5 — x2 = 0, x3 > 0,
homogeneous of degrege

flax) = a’ f(x) a>0. (2.3)
The representations; are given by
Ti () f(x) = f(xg)

whereg € G.
Generally we may choose a large number of different coordinate systems on the cone.
The different choices of coordinate systems on the cone lead to different reductions of the
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group G to its sub-group. The SO(2) basis is given by the decomposition according to the
compact sub-group @, 1) > SO(2). As a prelude to this decomposition one introduces
the spherical coordinates on the cone givenxby r(cosy, sing, 1), where 0< r < oo,

0 < ¢ < 27. From (2.3) it follows that the homogeneous function is defined uniquely
by its values on the circl§! = {s = (cosg, sing, 1)} in R>1. Consequently, elementary
representations of; can be realized on the spagg of infinitely differentiable functions

f(s) on S, In this realization the representations@fare given by

(Ti(2) f)(s) = (58)5 1 (5¢) geG (2.9)

wheres, = (sg)/(sg)s. (For the sake of simplicity, the realization @f in the space of the
function in St is denoted by the same symbBi and the restriction of a functioyf onto
St is denoted by the same symbgl) The operatoB; in D; defined by

2T+
VAT (=3 — )
intertwines 7; and T_1_;: T_1_;(g)B; = B;T;(g). If j is not an integer, therf; is
irreducible and is equivalent t6_;_;. Whenj =1,1=0,1,2,... in D, there are three

invariant sub-spaces:
(i) D;f, the sub-space ab, consisting of functions of the form

Bif) = [ o (25)

o0

f(s) = Z a, €"¢ s = (cosy, sing, 1)

n=-—1
(i) D, , the sub-space of functions of the form

l
f(s) = Z a, €"¢ s = (cosy, sing, 1)
n=—00
(i) DY = D;" N Dy, the sub-space spanned BY% — < m < 1.
The representations @, induced by7; in the sub-spac®? and in the factor spaces
D/ /D and D; /DY are irreducible.
The representations just described give three series of unitarizable representations.
() j=-1/2+ip, 0< p < oo. In this case

(f1, [2ip-1/2 = /51 f1(s) f2(s) ds (2.6)

defines a scalar product ;. Here d is the Euclidean measure ¢t and the bar means
complex conjugation. This makes (2.4) a unitary representation which is also irreducible.
This unitary representation forms the principal sefigs,» of UIRs of G. The completion

of D; with respect to the norm induced by the scalar product (2.6) yields the Hilbert
spaceH,_12 = L?(SY) of a square integrable function ovét. We shall identify the
representations;, j = —1/2+ip, with its extension to a UIR of7 in Hi,_1/2. The vectors

of the SO(2) basig,’ /? in H,_,/, are

. 1/2
. 1 [ré¢—i .
Fir=12(5) = Golodm I gme o _021, 42, @.7)
@i j=1,-1<1< —%. The scalar product in this case is given by
27 I(r+1)

(f1, f2)e = s, 117" L fu(s) o) ds dt. (2.8)

VA2t +1)/2) Jsys
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The Hilbert space completion dd, with respect to the scalar product (2.8) will be denoted
by H.. We shall identify the representatidi (for j = t) with its extension to a UIR o0&
in H,. The family of UIRs so constructed form the complementary series. The functions

1 [ - vz
Fi(s) = [ ( ”m)} @ 1< <0m=04142 .. (2.9
V27 LTA 4+t +m)
form an orthonormal basis i#,.
(i) j=1,1=0,1,2,.... Inthis case the representatiofj$ and7,” induced by7; in

the quotient spaceB;"/D? and D; /D? are unitary with respect to the scalar product

I > I'A+Ii+4+n) —
(f1, )i+ = —a,b, (2.10)
PV S
and
s Era+i- —
(o= Y b, (2.11)

respectively, wheref; = f; + D? anda,, b, are defined by

o0

A= 3 @e®  pe= Y b

n=—0o0 n=—0oo

These representations form the discrete series of UIRS.ofhe Hilbert space completion
of D;"/D? and D; /D? with respect to (2.10) and (2.11) will be denoted Hy and H,",
respectively.

The functionsf’*, where

m

1 (=l +m) 1/2é.m¢
V2r LT@A+1+tm)
m=I1+11+2....(n=—1—1,-1-2,..)) (2.12)

form an orthonormal basis i#," (H,").

fE(s) =

3. The tensor product of two principal series representations

As was pointed out in the introduction, the CG coefficients can be defined as matrix elements
of an intertwining operator between the tensor product representation and the irreducible
component appearing in the decomposition. Therefore, we start by quoting the results of
Molchanov (for details see [10] and references therein).

The tensor producl, ® Tj,, jx = —1/2+ip, k = 1,2, of two principal series
representations of can be realized on the Hilbert spaté(st x S1) = L?(S1) ® L?(SY)
of the square integrable functiorfsover S x S* with the scalar product

(f1, fDipi-1/2iip-1/2 = /1

Stx

Ja(s, 1) fa(s, 1) ds dr (3.0)
Sl

wheres = (cosg1, Singy, 1), t = (COSp,, Sing,, 1). A convenient basis of.2(S* x §1) is
given by

1 1
i01/2ip2-1/2( 4y — i |:F(§ —ip1+ml' (5 —lip2 +m2)

12
Jotsm = . _ gmertimaez 3.2
e 21 | T(3+ip1+m)T (5 +ip2 +m2) (32
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The representatiofi;, ® 7}, acts on the Hilbert spack?(S* x $2) by

(T, ® Ti(9) F) (5, 1) = (55 Q)E f (g, 1) g€G (3.3)
wheres, = (sg)/(sg)z andz, = (tg)/(1g)s.
Leto € C and lety, (h,) = €* be a one-dimensional representatiorHofLet U, be a

representation of; induced byy,. ThenU, can be realized on the Schwartz spacex)
of functions®(x) on X = H\G, whereG acts as follows

(Us (8)P)(x) = Yo (gt ) P (xg). 3.4
Wheno € iR, the representation (3.4) can be extended to a unitary representatioinof
L2(X).

The representatioff;, ® Tj,, j1, j» € C, is Naimark (or infinitesimally) equivalent to
the representatiol;,_;,. The equivalence is effected by the m&p;,: K (5% — K(X)
defined as

D(x) = (Pyjp /)(x) = (=[5, (D~ IH22f(5,1) (3.5)
for

(52 — 12, §1 — t1, S2t1 — S1t2)

. 1
[s, 7]
where S° is the complement of diagondl in S* x S*. Whenj, = —1/2+ip (k =1, 2),
P;,;, can be extended to a unitary map(s x S*) — L?(X), such that
lejz(j}l ® TJZ) = Uj Pj (3-6)

So the problem of decomposing the tensor product of two principal series representations
is reduced to that of decomposirg,_, .
Let st be an operator fronk (X) into D; defined by

1—j2 L jij2:

(Q5,®)(s) = ¥ (2, j, &) / ®(0)|[x, s 7% [x, s1% ([s~atx, 51/[s Ty, s/ dlx (3.7)
X
where® e K(X), s* = (£1,0,1), ¢ € {0,1/2}, Rej > |Rez| — 1 andy (z, j, ) is given
by
P11 - P11 -1
y(z, j, &) = [F (%—i—s)[‘(%—}-e)} : (3.8)

It can be shown that the integral in (3.7) may be continued analyticallyandz to give
the entire function. Moreover,

2 U(8) = T;(8) 05, (3.9)
whereT;(g) is the elementary representation®f Therefore, an intertwining operat(i};."fj2
betweenT;, ® T;,(j1, j € C) andT; is defined as a composition of ma;igi_j1 and P;, j,

(€L D@ =yGa = jrjoe) | Kelias, jats ju)f s, ds e, (3.10)
Stx S
Here
- p1—p| " p1—9| . ¢—ga| "
K. (jis, jot; ju) = 271 (it2/2 sian sigrf® sin 12 sin 5 2
-9 o1— 2| p1—¢
x Sigre sin 5 2| sin 12 2l sigr?* sin 12 2 (3.11)
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wheres = (C0Syy, Sing1, 1), t = (COSys,, Singy, 1), u = (COSy, Sing, 1) and

24 =-2—ji—jo—j —2a1=z+j —20=—z+] z=j2— J1.
(3.12)
The ma Jfsz induces a unitary operator frof?(S*x S?) into a direct integral of Hilbert

spaces supporting the unitary representatifips, >, and7,;* & 7,” (see later). Therefore,
in the case when the two representations both belong to the principal series, the structure
of the CG series is given by

o0 o0
Tipi—1/2 ® Tipy—1/2 = 2/ T_1/2)+ip dp ® Z(Tl+ ST,). (3.13)
0 1=0

In other words, the tensor product contains two copies of the principal series and one of
each discrete series representations.

The space of operata[f,'g1 ll//zﬂpz 12 Intertwining 7ip, 12 ® Tip,-1/2 aNd Ty 172

ip—1/2, 1/2,
o 12(Tio-1/2® Tipp-1/2(8)) = Thpo12)Clo Y5 10 (3.14)

is two-dimensional, where = 0, 1/2 is the multiplicity label.

The Fourier components of the functiofi € L?(S' x S') corresponding to the
representation of the positive and negative discrete series are given by the unitary operators

Clr 1pipy1/2@ANAC] 1 i 15,1 =0,1,2, ..., respectively
(Ci5 ) = / K*(j1s, jot; lu) f (s, 1) ds dt (3.15)
Six St
where
1 1/2 o
K= (s, ot ) = 53 [L+ (=1)"2 @70 WIK, (as, jot; ). (3.16)
e=0

The following relation holds

Cllpl 1/2,ipp— 1/2(Tlp1 12 ® Tip,—1/2(8)) = Ti(g)clpl 1/2ipp—1/2" (3.17)

Furthermore, we have the Plancherel formula
1/2
1/2,
[T of AREUE I Y T
X

+ Zwz,s{||ci,,1_1,2,ipz_1/2f||y; +1CL, 12 pprjaf e} (3.18)
=0

where the norms come from the scalar products (2.6), (2.10) and (2.11); the Plancherel
weightsw(ip — 3, &) andw;,. are defined by

w(ip —3.8) = @r®) pthuply(ip2 —ip1.ip — 3. &) (3.19)
and
we =272 22 + Diy(ip2 —ipr. 1 &)y (ipe —ipr, —1. &)} F  (3.20)

with [ = 0,1, ..., where the parameter in (3.20) may be any number frof®, 1/2} if
p1# p2 ande =1 + 1(mod2 only if p; = py; the functiony is given by (3.8).
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By applying both sides of (3.14) to basis vectors (3.2) we obtain

ip—1/2,¢ Ip 1/2 ip2—1/2
Z Cipi-1/2.ip— 1/2(m my, my) mlml (g)tm':mz (8)

m1 mz_f
ip—1/2 ip—1/2,
Z tp / (g)Clﬁl J{/zipz 1/2(m§m1a my) (3-21)
m=—0oQ
where
ip—1/2,¢ ip—1/2,¢ i 1/2,ip2—1/2 pip—1/2y.
Cipl—l/Z.ipz—l/Z(m my, mz) = (Cl,ol 1/2,ipo— 1/2fml3nz/ et ’ f;np / )Ip—l/Z (322)

are the CG coefficients for the irreducible component belonging to the principal series
representations and

1/2 ip—1/2 ip—
10120y = (Thy_10(0) 1072, Flr= Y2y 1

are the matrix elements of the principal unitary series representations of the Group
deriving equation (3.21), we have used the relation

Ip 1/2 ip2—1/2 1/2,ipo—1/2 ip1—1/2,ip,—1/2 .
by (&) (8) = (Tipy—172 ® Tipp-1/2(8) filh /2102 /,fmllmz 2 ip—1/2.ipa-1/2

where(, )ip,—1/2ip,—1/2 iS the scalar product in?(S* x S1).
Taking into account the expression f@f,,">"> /% and f,’~*/? and that(, )i,_1/2 is

defined by equation (2.6), the CG coefﬂuen@l_l/zqipz_l/z(m, m1, my), after (3.22), can
be written as

(m; my, mp) =

11]2

1 [ T(—j1 +m)T (= j2 4+ m) T+ j +m) ]1/2
2r)32 [T+ j1+m)C A+ jo+ma)l(—j +m)

2
x// /Ks(j15,j2t§ Ju) expimypy 4 ima@z — ime) dpy dpo dp. (3.23)
0

Analogously one finds from (3.17) that

00
Iy 1ol 1\ 4ip—1/2 ip2—1/2
Z Cipl—l/Z,ipz—l/Z(m s My, m2)tm’1m1 (g)tm’zmz (g)

;T
my,my=—00

oo
l
Z t+ (g)clﬂl 1/2,ipp— 1/2(m§m17 my)

m=I+1
ip1—1/2 ip2—1/2
Z Clp1 1/2.ipp—172(m"s My, mo)t 1my (g)tm’zmz (8)
m1 mz_f
—1-1 1 1
D @ Cir 10 ps1/2(m: M1, m2)
m=—o00
where
Iy . ol ip1—1/2)ipp—1/2 £l
Cipl—l/Z,ipz—l/Z(m’ may, my) = (Cipl—l/z,ipz—l/zﬁnﬁnz : o S)
and

I ip1—1/2,ipa—1/2 pl_
Cip— 1/2,ip2— 1/2(’” ma, my) = (Clp1 1/2,ipp— 1/2fmﬁlmz/ Pt s S i

are CG coefficients for the irreducible component belonging to positive and negative series
representations, respectively, and

mm(g) (T[i(g)friliv fyf;/t)li
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are the matrix elements of the positive (negative) series representati@ns ldénce, we
have the following integral representation hﬁ‘rl/z’iprl/z(m; mi, ny)

Cl. (m; my, my) =

1 [ [(—j1+m)T(—jo + ma)T(A+ 1 + m) T/Z

’“2 (2)3/2 A+ j1+m)C@A+ j2 +ma)l'(—=l —m)
27 ) ) )
X // /K*(jls, Jot; lu) @mertimeez=ime g, do, de (3.24)
0
1 T(—jr+mOT(—jo+ma)TA+1—m) T2
/1/2(’" mi, mz) = 202 | T+ - —
JA+m)I A+ jo+mo)I'(=l —m)
2 . . .
X // / K~ (j1s, jot; lu) @miertimeea=ime g, do, de. (3.25)
0

Furthermore, we have the following completeness relation for CG coefficients

1/2

I,o 1/2,e ip—1/2,¢ .

Smamy Smomy, = w(lp— 3.6)C 1(m;ma,ma)Ci, "1 535, 1 p(m; mly, my)
ip1—=1/2ipa—5

+Z“’l€( Y Cin1yzig1/2(m ma, mCis 1o i1 p(ms mfy, m)
=0

m=I+1
—j—-1
+ Y ¢, ; c- - m'y, m! (3.26)
ip171/2,ip271/2(m’ ma, mp) ip171/2,ip271/2(m’ my, my) .
m=—o00

wherew(ip — 1/2, ¢) andw;. are given by (3.19) and (3.20), respectively.
Let us calculate the CG coefficient for the case of three principal series. In order to
compute integrals in (3.23) we use the Fourier expansion

sing‘ sigrf® sm Z A, e+ 0<¢ <27 (3.27)

n=—00

—2a
1
sing‘ sigr*® sin? 5 e e dp = —

==
FG—a+e) T@+n+e)

—ime

X € (3.28)
F'a+e) TA—-—a+n+e)
(see formulae (3.631.1) and (3.631.8) from [14]). Hence, it follows that
mz(m ma, mp) = 271~ (11+Jz)/2y(]2_]1,1 )
e FG-—ai+el'G—a+el(3—as+e)
I'a1+ e)'(az + &) (az + ¢)
[(—i (—i rl+ i 1/2
[ ( J1.+m1) ( ]2+.m2) ( +].+m) } S (3.29)
FA+ j1+m)lA+ j2+m)l(—j —m)
where
g i I(a1+my+e+nTl(az—ma+e+n)(az+e+n) (3.30)

FrA—ai+mi+e+nlrQ—ay—mo+e+nAL—az+e+n)

n=—oo
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Table 1. The expressions fax and g in terms of j1, j2, j, m1, m2, andm.

ao12= —j2 +m2 aa=—-1—j1—jo—j azz=1l+j+m ags=1+j+jo—j
aoz=1+j1—jo+j Qo5 = —j1—m1 aia=—j+m 34 =—j1+m1
Qo14=j1—jo—J Qo34 = —j2 — m2 apps =1+ jo+mp azgs=1—j1+j2+j
apis= 1+ j1—my apzs=1+j—m a1za=1+ j1+my a5 =—j1+j2—J
aoz=—j1— j2+J Qoas=—j—m 35 =2+ j1+jo+j oazas=1+jo—my
Bor=—j1—jo—m Bos = —2j2 Bis=1+j1—jatm Bas=2+2j
Boo=1+j1—jao—m Br2=2+2j1 Bz =—j1—j+m2 Bas=1—jo+j+m
Boz=—j2—j—m1 Biz=1+j—j+m2 Poa=1l—j1+j+ma  Pas=—jo—j+m
Poa=1—jo+j—m1 Pu=2+jp+j+m Bos = —j1— ja +m2

Calculation of the sum (3.30) proceeds as in the previous paper [7] (see appendix A).
As a result the sum (3.30) is expressed in terms of the generalized hypergeometric function
3F> with unit argument
L (it ir— (Lt io 4 i —
S:n{com<h J2 ]+m1+8) (Citjo—mPA+j2+—m)
2 F(=ji+ 2+ HTA+j —m)(—j1—ma)

A= J2—J,—j+m L1+ ji+my;
X3F2 1

1+ji—Jjotm, —jo—j+my

+ cotw (% —my +8)

y F(i—j2+mTA+ j1+j+m2)
FA+j1— jo+ HT A+ j+mT(—j2 + ma)

—ji+ja—j,—j—ma2, 1+ jo—my;
X3F2 1

l—ji+jotm, —j1—j—my
o
4+ cotr (M+g>
2
y (=1—jo—j+m)l(=1—j1—j—m2)
C(=1—ji1—j2— DT (=j2—m)I'(—j1+ my)
24 14+ jo+j, 1+ jo4+mo, 1+ j1 —may;
x3F> 1

(3.31)

24+ o+ j—m1, 24+ j1+j+my;
There are two-term and three-term relations between the sgFig4). These relations
were derived by Thomae and are investigated in more familiar notation by Whipple [15]
(see appendix B). For our purpose we express the Whipple paramgtérs 0,1, ..., 5,
in terms of ji, jo, j, m1, mp andm as in [5]

3ro=—3—-3j2—mi—m  3n=3+3j+met+m  3Brp=-3-3ji+ma+m
3r3=g+3j+m1—m2 3r4=—§—3j+m1—m2 3r5=§+3j2—m1—m.
(3.32)

In table 1 the relationships between the set.(, B,..) and the setf, j2, j, m1, mp, m) are
given explicitly.
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As a result the sun§ can be rewritten in terms of the Whipple functions
cotr ((a13s/2) — PBsa + €) F,(51,4)
SinmB15SinmBas I (a235) I (035) I (@0025)
cotr ((aa3s/2) — Pra+ €) F,(1;4,5)
SinmBs1 SiNmT B4y [ (0023) I (0123) I (@012)
cotr ((a13s/2) + €) Fy(4;1,5)
SinmBsaSinmPra T'(o2a)T (o34 ( r234) }
By using three-term relations from appendix B the CG coefficients can be expressed in

terms of two hypergeometric function$>(1) with unit argument. For example, by virtue
of equality (B.9) (see appendix B)

Sin7l’/314Fp(5) sinn,B45F,,(1) sinnﬂ51F,, (G .
[(a23e)MNagzs)M(aozs)  T(p13) (0129 (ap12)  T(@o24) T (034) T (234)
the CG coefficient can be written in the form

S = JTSF(Olozs){

(3.33)

0 (3.34)

cl

F(aza)r(aomr(alzg)}”z
J1Jj2

I(@139) T (ar125) ' (@124)
M (co13) Fp (4)
I (0p34) I (0r234)

(15 m1, M) = Sy g, €77 (2) 32y 212 [

r r .
X M{ sinm (B4 — (a135/2) + ¢€)
SinmB1a
I"(cto24) Fp (1) }
I (129 (012) |
By using the relations from appendix B one can find a large number of other expressions
for the CG coefficients in terms aff>(1).

It is also worth noting that the formula (3.30) defines the most symmetric expression for
the CG coefficient and it can be written in terms of one special function, namely in terms
of the bilateral seriegH3 with unit argument [15] (see appendix C)
S Frl—ai+m+e)frQ—a—mo+e)'(l—a+e)

B (a1 +my+ )T (az — ma + )T’ (a + ¢)
ar+mi+€,a —mo+€,a + &; :|
1

+ sinm ((a135/2) + ¢€) (3.35)

x3H3 [ (3.36)
l—a1+m+el—a—mo+e1—a+es;
C1, €2, C3;
It is evident that the seriegis [ 1} is not changed under a permutation of

dy, dp, d3;
(c1c2c3) or (didads). This property ofz H3(1) implies 3! x 3! = 36 symmetry relations for

CG coefficients which also include (formally) Regge-type symmetry relations. For example,
the replacements

) At j—m —j1+ jo+m1—mp
Jj1—> ————— my —
2 2
. m . e
jz_)J1+J2+ My — Jit )2 1+mp (3.37)
2 2
1=
correspond to
ai+my— ap —mo l1—-a1+mi—1—a1—mq
as —mo — ay +mq l—ay—ms—1—a,—my (3.38)

a— a.



3584 G A Kerimov ad Y A Vediyev

A complete discussion of the symmetry properties of CG coefficients is not attempted here.
The expression for CG coefficients, which couples two principal series into a
representation of the positive (negative) discrete representation, are analysed in the same

way. We have

rn+@ais/2) (731291 ki) 2 [ [ (o239 (@019 ' (21123) }
[(@134) T (123) T (0124)

F,(1) (3.39)

l+
1112 (Wl my, m2) = 3m my+mp

y I (a235) M (0024) I (@2023)
I (a123) M (012)
with!/=0,1,2,... m=1+11+2,...and

N (m my, m2) —6 m
Ciun 2 T (130T (@125) T (2045)

F,(5) (3.40)

e mo@0ia/2) (9 )32 L+ Uit i2) 2 [ [ (@234) " (@012) T (t035) :|

I (c013)T" (024) " (023)
I" (o35 (2025)
with!/=0,12,...m=-1-1-1-2,....
In deriving (3.39) and (3.40) we have used the fact that the three-term relations between
3F>(1) functions reduce to two-term relations when one of the parametgrss a negative
integer or zero, namelyoss =1+ —m <0 (@123=1+1+m < 0).

4. The tensor product of a complementary series representation with a representation
of the principal series

Let H,, i,,-1,2 be the Hilbert space completion 6 (St x S$1) with respect to the norm
defined in terms of the scalar product [10, 11]

2 (4 1)
(f1, fDripe—1/2 = !

ﬁm [s1, s2] 27 fa(s1, 1) fa(s2, 1) dsq dsp Ot
- S1xS1x st

(4.2)
where f1, f> € (St x §1) and [ ] is given by the formula (2.1). The functiong:,2~ 2

Frin12¢0 ¢ 1 I(—1+m)TG —ip2 +mp)
s 27 | T(1+ 114+ m)T (3 +ip2 + mp)

with s = (cosgy, Sing1,1) and ¢t = (cosgs, Sing,, 1), form the orthonormal basis in
HI1 ipp—1/2. The tensor product;, ® Ti,-1,» of a complementary series representation
Ty, —1 < 11 < —1/2, with a representatioffi ,,_1,2, p2 > 0O, of the principal series can be
realized in the Hilbert spacH-, ij,—1/2. At j1 = 11 and j» = —1/2+ip, the formula (3.3)
gives the representation operator in this case.
LetF., i,,—1/2 be the Hilbert space completion &f(X) with respect to the scalar product

172
:| ém1¢1+im2<ﬂ2 (42)

(P4, (D2)7.’1,i,0271/2=/ D1(x) By ipy—1/2(Uipy—rr—1/2(ctx) P2) dx
X
where®;, ®, € K(X) and B, j,,—1/2 is the generalized function ok
2n 'tn+1 /‘ (
fl“( 2un+1/2
The operatorP;, i,,—1/,» establishes the unitary equivalence betw@en® 7i,,—1,» and a

unitary representation aff acting in the spacé€-, i,,—1,2, which is obtained by extension
of the representatioli,,_,, 1/>.

Buyipy1/2(®) = + 1)@t 2zt D/ 4120729 (1, ¢, ¢) dg.
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Furthermore, the intertwining mapping given by (3.7) induces a unitary operator from
Fr.ip—1/2 INto a direct integral of the carrier spaces ©f_1,> and T,+ @ T,”. Thus, the
tensor product?, ® T;,,—1/2 contains two copies of a direct integral plus a direct sum of
discrete series representations

o0 o0
T, ® Tipy-172 = 2/ T 124, dp @ Y (T @ T)). (4.3)
0 1=0

At j1 = 1 and j, = —1/2 + ip; the formulae (3.10) and (3.15) give this decomposition
and the following relations hold
Cl T2 (T ® Tipp-12)(8) = Tipo12()Co /21 (4.4)
Crripy1/2(Te ® Tip-12)(8) = T (O Cri 1) (4.5)
The corresponding Plancherel formula is given by
2n I'(r1+1)
VET(=211 +1)/2) Jo, s

0o 1/2 )
. -1 ip,
= [ et e
0 .0

[s1, s2] 2™ fa(s1, 1) fa(s2, 1) dsq dsp o

o0
+ > oI 1 aa g +1C i1/ f Nl ). (4.6)
=0
Herew(ip — 1/2, ¢) andw; . are defined by
w(ip—1/2,¢) = 2972732 pthap Ay, ipo — 1/2,ip — 1/2) 4.7)
and
1
=27 g 212 + 1) ————A(11,ipo — 1/2,1 4.8
¢ T2+ )F(1+j1) (t1, 102 — 1/2,1) (4.8)
where
o1 o
A(jl,jz,ﬁ:r(fl”z RR )r(“ LAk 8)
L iaioea1 a1
XF(11+J2+£+ e+ >F<J1 ]2+é+ e + ) 4.9)

(In equation (4.8) the parametemay be any number frorfD, 1/2}.)
It follows from (4.4) and (4.5) that the following relations between CG coefficients and
the matrix elements of UIRs hold

00
ip—1/2,¢ . T ip—1/2
Z Crl,ipz—l/Z(m/’mél.’ m,2)tml’lm1(g)tm’22,mz (g)
my,mh=—00
00
ip—1/2 ip—1/2 )
= Y o HCE 2 p(ms ma, my) (4.10)
m=—00

o0
Ly L AN 51 ip2—1/2
Z Crl,ipg—l/Z(m’ml’ mZ)tm’lml(g)tm;mz €3]

my,my=—00

o0
= D i (@Cy iy 1ol m1,m2) (4.12)
m=Il+1
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o0

I ipa—1/2
Z Crl ip2— l/Z(m ml’ m2)tm ml(g)tm/zzmz (g)

’ .
my,my=—00

—1-1
= Y 10 (@Ce 1p(mi my,mp) (4.12)
m=—0oQ
where
ip—1/2, _ ip—1/2, 1/2 ip—1/2
Cor g ay2(ms ma,ma) = (C 2o a2, £y a2 (4.13)
I+ I+ 1/2 1+
Ctl,ipz—l/z(m; my, mZ) = (C'rl,i,oz—jl_/Zfr:;llrlnl(;2 / ’ fm )li (414)

are the CG coefficients of the tensor prodigt® 7;,,—1/2.
Furthermore, we have the following completeness relation

1/2
© = ip—1/2,¢ ip—1/2,¢ o /
Z Z w(ip—1/2, &)Cy ipao1jp(ms my, ma)Co i 7% o (my my, m))
0 e=0 m=—00

o0

Za)m( Z Tl i0g— 1/2(m ml,mz)Crl ipp— 1/2(m my, my)

m=Il+1

+ Z Cripp1j2(mmy, mp)Co o o(msmy, m 2)) = Spuym; Sy, (4.15)

m=—00

wherew(ip — 1/2, ¢) andw, . are given by (4.7) and (4.8), respectively.
At h=11,-1<1 <-1/2, andj, = —1/2 + ip, formulae (3.23), (3.24) and (3.25)
((3.35), (3.39) and (3.40)) give corresponding CG coefficients.

5. The tensor product of complementary series representations

The tensor producl,, ® T;,, -1 < © < —1/2, i = 1,2 of complementary series
representations act oH,,,, isomorphic to the Hilbert space completion 6/ (S* x 1)
with respect to the scalar product

A Mo+ DI'(2+D
I(—t+1)/2)T (- (22 + 1)/2)

X / |[s1, s2]1 7 [11, 2] 712 fa(s1, 1)
S1xS1xSix St

X f2(s2, t2) dsq dsp dry diz (5.1)

(flv f2)1112 =

where f € C*(S* x §?) and [ ] is given by (2.1).
The functionsf ™% are

maymy

Tz (55

1= 1 |: (=11 +m)l'(—12 + my)
FA+t+m)I'(1+ 12 +my)
with s = (cosgy, Sing1, 1) andr = (COSyy, Sing,, 1), form the orthonormal basis iH,

At j; = 1,1 =1, 2, the formula (3.3) gives the representation operator.
Let F,,., be the Hilbert space completion &f(X) with respect to the scalar product

1/2
i| eimlzp1+im2¢2 (52)

172"

(Cbl, cbZ)rlrz = / (D]_()C)BH-[Z(UTZ,H((){x)qDZ) dx
X
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where®q, &, € K(X) and B, , is the generalized function ok
22nt2rat+2 't + DI (12 4+ 1)
-2t +1/2T (-2t +1)/2)

x / s~ s~ 7 s ™, st ] 72 T (x) d.
X

B'L'l.rz(@) =

The operatorP,,,, establishes the unitary equivalence betw&eng 7., and a unitary
representation ofG acting in the spacd-,, ,,, which is obtained by extension of the
representatio/,,_, .

The mapping given by (3.7) induces a unitary operator ffeyn, into a direct integral
of the carrier spaces df,_1» and7,* ® T,” whent; + 7, > —3/2 andTi,_12, T, ® T~
and Ty, +.,+1, Whenty + 12 < —3/2. Thus, the structure of CG series have the form

(i)

o0 oo
I, T, = 2[ T_1/24ip do ® Z(T[+ eT1) whent; + 1o > —3/2 (5.3)
0 1=0

(if)
o0 o0
T, T, = 2/ T_1/21ipdp @ Z(T1+ ST, ) O Ty whenz; + 1 < —3/2.
0 1=0

(5.4)

In case (ii) H;,, contains a sub-space which is isomorphic to one copy of the
complementary series representatify ., 1.
In both cases formulae (3.10) and (3.15) at

Ji=1 =T (5.5)

define the Fourier components corresponding to the representations of the principal and
discrete series, respectively. For the Fourier component transformed according to the
complementary series representatip, ,,+1 it is also necessary to put

j=u+n+l e=0 (5.6)
in formula (3.10). We have the equalities

CLVP (T ® T)(8) = Tip12(8) iy V2" (5.7)

Criny(Te, ® T, () = T (9)CL, (5.8)

CIE YT, ® T,)(8) = Trypr+1(8)CIE 0. (5.9)

The Plancherel formula for the tensor product of two complementary series
representations is defined by

2+t It + DI (12 + 1)
7 =@+ 1/T (- (22 + 1)/2)

1 1 —
X / [s1, 2] 77 11, 22] 72 fa(s1, t1) fo(s2, 12) dsq dso dr1 df»
S1xS1x Six St

o 1/2 _
N / > wlip = 1/2,)1CLL > flln, . dp
0 =0

o0
+ > 0 {lIC, Fllgr + 1Ch, Fllg ) + ol CEEZ 0 f (5.10)
=0
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where the norms correspond to the inner product in the representation spaces of the principal,
discrete and complementary series; the functieiep — 1/2, ¢), w; ., @ are given by

w(ip—1/2,¢) = 2 5,3 tanhmp[coshrp + (=1 sinw(r1 + 72)]

xPG+u+n+ipPly(ta—1, —3 +ip, &) 2 (5.11)
W = 27‘[171'2721757_[72(_1)28+l+1(21 + 1)F(2 41+ T+ _[2)
(Il =11 — )y (2 — 11, L, &)y (2 — 1, = — 1, )} 1 (5.12)

with! =0, 1, 2, ... ande may be any number frof0, 1/2}, if t1 # 1, ande = [+1(mod2
onlyif iy =1

0 if —%’gr1+1:2<—1
w=142"" 230 (—1 — (-3 — )T (11 + 1) (5.13)
xF(r2+1)F(2+t1+r2)/F(—%—rl—rz) if rl+r2<—%.

One can easily derive the following relations between the CG coefficients and the matrix
elements of UIRs

. 00
. ip—1/2 o
E Clrfrzl/zqs(m/i m/l, m’Z)tr:lliml (g)trflz/zmz (g): § t;lqﬁm / (g)clrf,rzl/z(m; may, m2) (514)
00

mymy=— m=—00
o0 o0 ;
1 . l .
Yo Chnmsmimyin (@17 ()= Y 1, (9)Chir,(ms ma, m2) (5.15)
mymy=—00 m=Il—1
0 —[-1 ;
1 reoo 7 /N4 T T _ - I .
ol m'im, mpt (@)1, (8) = > b (Q)Chy, (m: my, ma) (5.16)
mymy=—00 m=—o0
o0 o0
+ro+1l, 7./ /N4 T T T1+1o+1 +1o+1 .
Yo CEE e my mpy (7, (@) = Y iy CHE T m; ma, o)
mymy=—00 m=—o00
(5.17)
where
ip—1/2,6 /. . _ o pip=1/2, ipa—1/27.
CoY25 (s my, mp) = (CL Y2 prme | pioe=1/2y, (5.18)
1+ . I+ 1+
CT]_Tz(m’ my, m2) = (Crlrzf;;]i_zzi fm )l:t (519)
1 . 1,0 1
CIr2 i (m; my, mg) = (CRFRH0pnn | putetly (5.20)

are the CG coefficients for the tensor prodiigt® 7+,.
It follows from equation (5.8) that

o 1/2 oo ) —7
/ 373" wlip = 1/CE M4 (m my, mo) "> (m: my, mo)
0

e=0 m=—00

o oo -
l . L .
+ sz,s< > Cl (m:my, m2)Criry(ms my, m2)>
=0

m=I[+1
—1-1 -
I . I ]
+ E Cryr, (m; ma, m2) Cryr, (m; ma, mo)
m=—0oQ

00
u+t+l, . a+o+l, N
+w E Ctlltz 2T (m; my, mp) X Ctlltz (m; my, mz) = Bmlm/lamgm’z‘ (521)

m=—0Q
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The integral representations and explicit expressions for the CG coefficients of the tensor
product7;, ® T, can be derived from the corresponding results of section 4 by using the
substitutions (5.5) and (5.6).
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Appendix A. Calculation of the sum (3.30)

Let us consider the integral

I = i / f(z)dz (A.1)
2ri J,

where

Fai+mi+e+2)T(ap—ma+e+2)T(a+e+72)
Frl—ai+m+e+)laa—my+e+2)I'A—a+e+72)
andC is a circle of radiusR as large as we please avoiding all zeros ofim +m1+¢+2)
or sinmt(a;—my+e+2z) or sin(a+¢e+z) or sinrz. The series (3.30) is obviously the sum
of f(z) at the polexx =0, £1, +2, ..., of cot(xz). By arguments exactly parallel of that
of [16, ch 1.4] we can show that & — oo, |I¢| — 0O, provided thatR/ (a1 +az+a3) < 1.
However, I¢c is equal to the sum of all residues of the integrand at its poles within the
contour. Thus, the serigsis equal to minus of the residues at the poleE @f+a;+m1+-¢),
I'(z+ax—my+¢) andl'(z 4+ a + ¢). Hence, we find

f(z) = cotnz (A.2)

I'la — a1 —m)T'(ap — a; — m)
'l—2a)Trl—a—a1—m)I'd—ax — a1 — m)

S=mnw {Cotn(al +m1+¢)

2a1,a +ar+my, ax + a1 + m; :|
1

><3F2|:
l—-a+ai+my,1—ax+ag+ m;
I'a—az+myl'(ay —az +m)
rA—2a)Frl—a—ax+mx)TL—ay —az +m)
2a,a + ap — mo, ap + ay — m; :|
1

+ cotw(ap—mo+e¢)

X3F2|:
l—a+ay—mpy1—ay+a; —m;
[(ar —a+myl(az —a —mp)

cot
0@+ &) F S P —ar —a + mOT (L —dg —a —myp)

2a,a +ay —my, a + az +my;
x3F? |: 1:|} A3)
l-ai+a—-—m,1—a+a+my
where

a,b,c; .

T (a)n(b)n(c)n
3 =2 et © A4
i 2|: d,e; Z:| ; (d)n(e),n! £ (A.4)

is the generalized hypergeometric functigfp(z). Here (a), = (I'(a + n)/T'(a)). The
serieszF»(1) is convergent ifRlI(d + e —a — b — ¢) > 0.
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Appendix B. Relation betweenz F»(1) series

In this appendix we introduce Whipple's notation (see section 4.3 of [15]). Let
ro, F1, 2, '3, ¥4, s be six parameters such that
5

Y ri=0 (B.1)

i=0
and let
O5lmn::I-/2'|""["'rm"""n ﬂmn=1+rm_rn- (BZ)

Note that the coefficients,,,, are totally symmetric wheregs,, = 2 — B..,. The Whipple
functions F, (I; m, n) and F,,(I; m, n) are defined as

l Komn s Uhmn Amn s :|
F,(l;m,n) = F| 8 B.3
P ) = T BT B 2[ I R | (B.3)
and
1 Anks  Qgks h;]
Fn l; ’ = F J 8 B4
1) = ST B T B 2[ B Pu 1 (B.4)

with the labels £, h, k,l,m,n) denoting any permutation 0of0,1,2,3,4,5. The
convergence condition foF,(/; m,n) is Re(x,,;) > 0 and the convergence condition
for F,(I; m, n) is Re(oy,,,) > 0. We note that any, (/; m, n) function is obtained from the
F,(l; m, n) function by changing the signs of all theparameters.

The two-term relation betweej¥,(1) functions can be written in the present notation
as

F,(I;m,n) = F,(I;m', n") (B.5)
F,(l;m,n) = F,(I; m',n) (B.6)

for any combination of, m, n, m" andn’. The Whipple functiong’, (; m, n) andF,,(l; m, n)
are thus independent of andn and will be denoted by, (1) and F, (1), respectively.

All the three-term relations possible between 329(1) functions are summed up in
the six relations in Whipple's notation

Sinﬂﬂzg, Fp (0) _ Fn (2) _ Fn (3) (B7)
I (ap23) (o134 (a135) T (@zgs)  T(a124) T (00125) T (0r245)
Sil’l7T/345Fp(O) sinn,Bson(4) sinnﬂ54Fp(5) -0 (B 8)
T(ao1)T (@019 (023)  T(@124)T (130 T(23)  T(@125) T (0139) T (ctazs) '
F,(0) sin7BosF, (0)

+ = RoF,(5) (B.9)
IM(@012) T (c013) N (@024) T (ct014) N (034)  T'(00123) I (@124) T (00134) I (@0234)

where 73Ry = SiNma145SINTa245SINT o345 + SiNTa123SiNT BagSinPsg and the relations
which are obtained by changing the signs of all te

When one of they;,,, parameters is a negative integer the three-term relations reduce
to two-term relations between 18 terminating Whipple functions. For the case in which
aop3s = —k, k being a positive integer or zero, one has

I (a014) ] (ct145) I (00134) Fp (2) = ' (024) M (@245) I (@2234) F, (1)
= (@012 (a125) ' (@123) Fjp (4)
= (—D*TI' (010 (ct024) T (t012) F, (0) (B.10)
= (=D!T (130T (a239) I (123 F ()
= (=D*T (@145)T (@245) " (@125) F; (5).
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Appendix C. Bilateral series

By the bilateral series we mean the series (see [15, ch 6])

C1,C2y...,CA, 00
AHB[ Z}: 3 (ccll)n,(cclz)n,...,?)nzn. .1
d]_,dz,...,dg; n:—oo( 1)113( 2)}17"-7( B)n

It has A numerator parametets, co, ..., c4, B denominator parametetk, do, . .., dg and
one variablez. The function 4 Hg(z) is defined for all real and complex values of the
parameters

C1,€C2,...,Cxp dl, dz, ...,dB (C2)

except zero or integers and for all values of the variabdeich thatz| = 1. If z = —1 we
must have

Ri(di+do+---+dg—c1—co—---—cy)>1 (C3)
for convergence and i = 1
Ri(di+do+---+dp—c1—ca—---—ca) > 0. (C.4)

If any one of thec parameters is a negative integer the series terminates above, if any one
of the d parameters is a positive integer the series terminates below. If any one of the
¢ parameters is a positive integer or if any one of dhgarameters is a negative integer the
series is not defined.

There is an interesting general relation betwdeseries of the typg H4 (1) (see (6.3.2)
from [15])

A 14 () —b,. by —b) 14 (c) —by;
;r[l_(d)_b: b/;_(c)}AHA 1|=0 (C5)

14 (d) —by;

where it is understood that there ateof the b, ¢ andd parameters, anfll > ((d —c¢)) > 0.
A prime denotes the omission of a zero factor in such a sequence of parameters. For example
b, — (b)" indicates the sequenég, — by, by, —ba, ..., by —by_1,b, —bys1, ..., ba.

In particular, ifA = 3, we have

r 1+b,—b1,14 b3z — by, by — by, by — b3
1—d1—b1,1—d2—b]_,1—d3—b1,b1—€1,,bl—Cz,bl—C3
FTl4+c1—b1,1+co— by, 1+ c3—by; T
X3H3 1
L14+dy— by, 1+dr— b1, 14+ ds— by; i

4T 1+b1—by,14+b3— by, by — by, by — b3
1—-di—b3,1—do—bp,1—dz— by, by —c1,,bp—c2,bp—c3
FTl4+c1—bo,14co— by, 14 c3—by; T
X3H3 1
L1+dy— by, 1+do— by, 1+ ds— by; n

4T 1+ by —b3, 1+ by — b3, b3 — b1, bz — b>
1-dy—b3,1—do—b3,1—d3— b3, bz—c1,,b3—c2,b3—c3

l+c1—b3,1+cr—b3, 1+ c3—b3;
X3H3|: 1:|

(C.6)
l+di—b3,1+d>— b3, 1+ds— bs;
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where

r |:c1, €2y .., Ca i| _ (el (c2)...T'(ca) C.7)

di,do,....,dg |~ T(d)T(d)...T'(dg)"
This is a relation between threélz(1) series.

It follows from (C.5) that, in the general case, the bilateral sefifls (1) with unit
argument can be expressed in terms of the generalized hypergeometric fupEtioy(1)
with unit argument. In particular, the functiggi3(1) is expressed in terms @ff»(1).

Settingb1 =di, by=d> andb3 =1, we find

i T(c1+mT(ca+m)T(cz+n) T 1
['(dy+n)(do+n)(d3+n)  sinmersinme;sinmes sing (dy — do)

n=—oo

{ sinwd> P

X

I —di+d)T(L—dy+d)T(dr — c)l(dr —ca) > 2
l4+c1—di,1+co—di, 14+ c3—dy;

X |: 1:|

14+do—di, 1+ d;—di;
sinmd; 2
T(1+d1+d)T(1+ds — dp)T(dy — c))T(dg — co)T(da — c3)° -
l1-do+c1,1—do+c2,1—do+c3;

(C.8)

14+dy —do, 1+ ds— dy;
Thus, we have another proof of the summation formula for the series (3.30). In concluding
this appendix we give a useful formula for calculation of special values of the CG coefficients

b,c,d;
3H3|: 1:|
l1+a-b,14+a—c,1+a—d;

=[Fl-HIA—c)TA-—dTl+a—-b)T(l+a—c)T(1+a—d)
FrA-—3arA+ 30T A+ 32a—b—c—d|TA+a—c—d)
Fl+a—b—dT(1+a—b—c)1+3a— b1+ 3a—c)
Fl+ia-drd+ard-al ™ (C.9)
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