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Clebsch–Gordan problem for three-dimensional Lorentz
group in the elliptic basis: I. Tensor product of continuous
series

G A Kerimov† and Y A Verdiyev
Trakya University, International Center for Physics and Applied Mathematics, PO Box 126,
Edirne, Turkey

Received 29 July 1997

Abstract. This paper is the first of two papers devoted to the study of the Clebsch–Gordan (CG)
problem for the three-dimensional Lorentz group SO0(2, 1) in an elliptic (or SO(2)) basis. Here
we describe the reduction of the tensor product of two unitary irreducible representations (UIRs)
of the continuous series, i.e. belonging to either the principal or complementary series. The
corresponding CG coefficients are defined as matrix elements of an intertwining operator between
the tensor product representation and the irreducible component appearing in the decomposition.
We then obtain an expression for CG coefficients in terms of a single function, namely in terms
of the bilateral series3H3(1) with unit argument defined in the complex spaceC3 of the variable
j1, j2, j . In the general case the3H3(1) functions are expressed in terms of two hypergeometric
functions3F2 with unit argument; however, it reduces to the single3F2(1) function if at least
one of the coupling UIRs belong to a discrete series. We derive a completeness relation for CG
coefficients for all the cases under consideration.

1. Introduction

This paper is the first of two devoted to the study of the Clebsch–Gordan (CG) problem for
unitary irreducible representations (UIRs) of the three-dimensional Lorentz group SO0(2, 1)
in an SO(2) basis. In the present paper we describe the reduction of the tensor product of
two UIRs of the continuous series, i.e. belonging to either the principal or complementary
series. The tensor product of the remaining cases will be studied in the next paper of this
series.

The three-dimensional Lorentz group SO0(2, 1) is the most important non-compact Lie
group used so far in mathematics and physics. The UIRs of SO0(2, 1) or its double covering
group SU(1,1) were given by Bargmann [1] many years ago. Since the advent of SO0(2, 1)
symmetry in relativistic scattering theory and in dynamical symmetry group theory, it has
become necessary to know the CG coefficients for this group.

The CG coefficients of SO0(2, 1) in an SO(2) basis have already been dealt with in
certain cases; if the two representations both belong to the positive discrete series, or if
both belong to the negative discrete series, then the CG coefficients have been worked out
by Andrews and Gunson [2] and Sannikov [3]. Holman and Biedenharn [4] derived many
CG coefficients solving a second-order finite-difference equation. Thus their CG coefficient
is not analytically containable to other cases of coupling. Ferreti and Verde [5] worked out
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the CG series for the tensor product of two principal series with some restrictions on the
‘magnetic’ quantum numbers by using an indirect method initiated by Andrew and Ganson.
This method was later used by Wang [6] who restated their results and also worked on the
remaining cases except that of the complementary series. An (incomplete) study of the CG
problems for the SO0(2, 1) group in an SO(2) basis is also presented in [7–9].

No author, to the best of our knowledge, has explicitly calculated the CG coefficients for
all possible cases of tensor products of UIRs of SO0(2, 1) in an SO(2) basis. This paper fills
these gaps. The purpose of the present work is to determine the CG coefficients, in a direct
and rigorous manner. We suggest a new method, in which the CG coefficients are defined as
matrix elements of an intertwining operator between the tensor product representation and
the irreducible component appearing in the decomposition. Our task is greatly simplified by
the fact that the intertwining operators and the Plancheral formulae for all tensor products
of UIRs of SO0(2, 1) have already been obtained by Molchanov [10] (for a review, see also
[11, 12]).

The contents of this paper are arranged as follows. In section 2 we present all the
mathematical preliminaries and notation necessary for subsequent sections. In section 3
the decomposition of the tensor product of the two principal series representations onto
irreducible representations is described. The corresponding CG coefficients are defined
as matrix elements of operators intertwining the tensor product of principal series and
irreducible components appearing in the decomposition. We then obtain an expression for
CG coefficients in terms of a single function, namely in terms of the bilateral series3H3(1)
with unit argument defined in the complex spaceC3 of the variablej1, j2, j . This function
is singular on a subset of discrete points ofC3, corresponding to the case when all three
UIRs belong to the discrete series. In the general case the3H3(1) function is expressed in
terms of two hypergeometric functions3F2 with unit argument; however, it reduces to the
single 3F2(1) function if at least one of the coupling UIRs belong to a discrete series.

In section 4 we discuss the tensor product of the complementary series representation
with a representation of the principal series. The tensor product of pairs of complementary
series representations is studied in section 5. We derive completeness relations for CG
coefficients for all these cases under consideration. Some mathematical results necessary
for section 3 are given in appendices A–C.

2. The group SO0(2,1)

In this section we establish notation and review those properties ofG = SO0(2, 1) that we
will need later. For a more detailed treatment ofG we refer to [1, 11–13].

The groupG is the connected component of the group of proper linear transformations
of a three-dimensional pseudo-Euclidean spaceR2,1 which preserves the bilinear form

[x, y] = x1y1+ x2y2− x3y3. (2.1)

Every elementg of G can uniquely be factorized into

g = hτaηkθ (2.2)

each factor constituting a sub-group ofG. They are explicitly given by

hτ =
( coshτ 0 sinhτ

0 1 0
sinhτ 0 coshτ

)
∈ H aη =

( 1 0 0
0 coshη sinhη
0 sinhη coshη

)
∈ A
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and

kθ =
( cosθ sinθ 0
− sinθ cosθ 0

0 0 1

)
∈ K.

We shall considerG as acting onR2,1 on the right. In accordance with this we shall
write the vector in row form.

The groupG acts transitively on the one-sheeted hyperboloidX = {x ∈ R2,1 : [x, x] =
1}. An invariant measure onX is dx = dx1dx2/|x3|. The decomposition (2.2) tells us that
the hyperboloidX can be parametrized by coordinatesη, θ as follows

x = 0
x αx

0
x= (0, 1, 0)

whereαx = aηkθ . It is also worth noting thatX is isomorphic to the co-set spaceH\G.
The generators of the Lie algebra ofG are denoted byJ1, J2, J3. HereJ1, J2 are the

generators of the pure Lorentz transformationshτ , aη along the 1 and 2 axes, respectively,
and J3 is the generator of rotationskθ in the 1,2 plane. The unitary faithful irreducible
representations ofG are infinite-dimensional. All such UIRs are labelled by the eigenvalue
of the Casimir operatorQ = J2

1+ J2
2− J2

3 = −j (j + 1), whereJ1, J2, J3 are the Hermitian
operators corresponding toJ1, J2, J3, respectively, in the Lie algebra representation.J3 is
elliptic, J1, J2 hyperbolic. When we use a SO(2) basis,J3 will be the preferred generator.
The eigenvalues ofJ3 will be denoted bym.

We now give the spectrum ofj corresponding to UIRs and eigenvaluesm of the
operatorJ3 in each such representation. (For the purposes of this paper we only consider
the single-valued representations.)

(i) Principal seriesTiρ− 1
2
:

j = − 1
2 + iρ 06 ρ <∞ m = 0,±1,±2, . . . .

(ii) Complementary seriesTτ :

j = τ − 1< τ < − 1
2 m = 0,±1,±2, . . . .

(iii) Positive discrete seriesT +l :

j = l l = 0, 1, 2, . . . m = l + 1, l + 2, . . . .

(iv) Negative discrete seriesT −l :

j = l, l = 0, 1, 2, . . . m = −l − 1,−l − 2, . . . .

Any UIR of G is equivalent to some sub-representation of an elementary representation
Tj , j ∈ C. They occur as unitarizations of elementary representations or as unitarizations
of quotients of such representations.

Let us recall some facts about the elementary representations of the groupG. The
representationsTj , j ∈ C, can be realized in the space of the infinitely differentiable
function f (x) on the upper sheet of the two-dimensional conex2

1 + x2
2 − x2

3 = 0, x3 > 0,
homogeneous of degreej

f (ax) = ajf (x) a > 0. (2.3)

The representationsTj are given by

Tj (g)f (x) = f (xg)
whereg ∈ G.

Generally we may choose a large number of different coordinate systems on the cone.
The different choices of coordinate systems on the cone lead to different reductions of the
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groupG to its sub-group. The SO(2) basis is given by the decomposition according to the
compact sub-group SO0(2, 1) ⊃ SO(2). As a prelude to this decomposition one introduces
the spherical coordinates on the cone given byx = r(cosϕ, sinϕ, 1), where 06 r < ∞,
0 6 ϕ < 2π . From (2.3) it follows that the homogeneous function is defined uniquely
by its values on the circleS1 = {s = (cosϕ, sinϕ, 1)} in R2,1. Consequently, elementary
representations ofG can be realized on the spaceDj of infinitely differentiable functions
f (s) on S1. In this realization the representations ofG are given by

(Tj (g)f )(s) = (sg)j3f (sg) g ∈ G (2.4)

wheresg = (sg)/(sg)3. (For the sake of simplicity, the realization ofTj in the space of the
function in S1 is denoted by the same symbolTj and the restriction of a functionf onto
S1 is denoted by the same symbolf .) The operatorBj in Dj defined by

Bjf (s) = 2j0(j + 1)√
π0(− 1

2 − j)
∫
s1
|[s, t ]|−j−1f (t) dt (2.5)

intertwines Tj and T−1−j : T−1−j (g)Bj = BjTj (g). If j is not an integer, thenTj is
irreducible and is equivalent toT−1−j . Whenj = l, l = 0, 1, 2, . . . in Dl there are three
invariant sub-spaces:

(i) D+l , the sub-space ofDl consisting of functions of the form

f (s) =
∞∑

n=−l
an einϕ s = (cosϕ, sinϕ, 1)

(ii) D−l , the sub-space of functions of the form

f (s) =
l∑

n=−∞
an einϕ s = (cosϕ, sinϕ, 1)

(iii) D0
l = D+l ∩D−l , the sub-space spanned by eimϕ , −l 6 m 6 l.

The representations ofG, induced byTl in the sub-spaceD0
l and in the factor spaces

D+l /D
0
l andD−l /D

0
l are irreducible.

The representations just described give three series of unitarizable representations.
(i) j = −1/2+ iρ, 06 ρ <∞. In this case

(f1, f2)iρ−1/2 =
∫
S1
f1(s)f2(s) ds (2.6)

defines a scalar product inDj . Here ds is the Euclidean measure onS1 and the bar means
complex conjugation. This makes (2.4) a unitary representation which is also irreducible.
This unitary representation forms the principal seriesTiρ−1/2 of UIRs ofG. The completion
of Dj with respect to the norm induced by the scalar product (2.6) yields the Hilbert
spaceHiρ−1/2 = L2(S1) of a square integrable function overS1. We shall identify the
representationsTj , j = −1/2+ iρ, with its extension to a UIR ofG in Hiρ−1/2. The vectors
of the SO(2) basisf iρ−1/2

m in Hiρ−1/2 are

f iρ−1/2
m (s) = 1√

2π

[
0( 1

2 − iρ +m)
0( 1

2 + iρ +m)

]1/2

eimϕ m = 0,±1,±2, . . . . (2.7)

(ii) j = τ,−1< τ < − 1
2. The scalar product in this case is given by

(f1, f2)τ = 2τ√
π

0(τ + 1)

0(−(2τ + 1)/2)

∫
S1×S1

|[s, t ]|−τ−1f1(s)f2(t) ds dt. (2.8)
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The Hilbert space completion ofDτ with respect to the scalar product (2.8) will be denoted
by Hτ . We shall identify the representationTj (for j = τ ) with its extension to a UIR ofG
in Hτ . The family of UIRs so constructed form the complementary series. The functions

f τm(s) =
1√
2π

[
0(−τ +m)
0(1+ τ +m)

]1/2

eimϕ − 1< j < 0, m = 0,±1,±2, . . . (2.9)

form an orthonormal basis inHτ .
(iii) j = l, l = 0, 1, 2, . . .. In this case the representationsT +l andT −l induced byTl in

the quotient spacesD+l /D
0
l andD−l /D

0
l are unitary with respect to the scalar product

(f̃1, f̃2)l+ =
∞∑

n=l+1

0(1+ l + n)
0(−l + n) anbn (2.10)

and

(f̃1, f̃2)l− =
−l−1∑
n=−∞

0(1+ l − n)
0(−l − n) anbn (2.11)

respectively, wheref̃i = fi +D0
l andan, bn are defined by

f1(s) =
∞∑

n=−∞
an einϕ f2(s) =

∞∑
n=−∞

bn einϕ.

These representations form the discrete series of UIRs ofG. The Hilbert space completion
of D+l /D

0
l andD−l /D

0
l with respect to (2.10) and (2.11) will be denoted byH+l andH−l ,

respectively.
The functionsf̃ l±m , where

f l±m (s) =
1√
2π

[
0(−l ±m)
0(1+ l ±m)

]1/2

eimϕ

m = l + 1, l + 2, . . . , (m = −l − 1,−l − 2, . . .) (2.12)

form an orthonormal basis inH+l (H
−
l ).

3. The tensor product of two principal series representations

As was pointed out in the introduction, the CG coefficients can be defined as matrix elements
of an intertwining operator between the tensor product representation and the irreducible
component appearing in the decomposition. Therefore, we start by quoting the results of
Molchanov (for details see [10] and references therein).

The tensor productTj1 ⊗ Tj2, jk = −1/2 + iρk, k = 1, 2, of two principal series
representations ofG can be realized on the Hilbert spaceL2(S1 × S1) = L2(S1)⊗ L2(S1)

of the square integrable functionsf over S1× S1 with the scalar product

(f1, f2)iρ1−1/2,iρ2−1/2 =
∫
S1×S1

f1(s, t)f2(s, t)ds dt (3.1)

wheres = (cosϕ1, sinϕ1, 1), t = (cosϕ2, sinϕ2, 1). A convenient basis ofL2(S1 × S1) is
given by

f iρ1−1/2,iρ2−1/2
m1m2

(s, t) = 1

2π

[
0( 1

2 − iρ1+m1)0(
1
2 − iρ2+m2)

0( 1
2 + iρ1+m1)0(

1
2 + iρ2+m2)

]1/2

eim1ϕ1+im2ϕ2. (3.2)
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The representationTj1 ⊗ Tj2 acts on the Hilbert spaceL2(S1× S2) by

(Tj1 ⊗ Tj2(g)f )(s, t) = (sg)j1
3 (tg)

j2
3 f (sg, tg) g ∈ G (3.3)

wheresg = (sg)/(sg)3 and tg = (tg)/(tg)3.
Let σ ∈ C and letχσ (hτ ) = eστ be a one-dimensional representation ofH. LetUσ be a

representation ofG induced byχσ . ThenUσ can be realized on the Schwartz spaceK(X)

of functions8(x) onX = H\G, whereG acts as follows

(Uσ (g)8)(x) = χσ (αxgα−1
xg )8(xg). (3.4)

Whenσ ∈ iR, the representation (3.4) can be extended to a unitary representation ofG in
L2(X).

The representationTj1 ⊗ Tj2, j1, j2 ∈ C, is Naimark (or infinitesimally) equivalent to
the representationUj2−j1. The equivalence is effected by the mapPj1j2: K(S0) → K(X)

defined as

8(x) = (Pj1j2f )(x) = (−[s, t ])−(j1+j2)/2f (s, t) (3.5)

for

x = − 1

[s, t ]
(s2− t2, s1− t1, s2t1− s1t2)

whereS0 is the complement of diagonalS0 in S1× S1. Whenjk = −1/2+ iρk (k = 1, 2),
Pj1j2 can be extended to a unitary mapL2(S × S1)→ L2(X), such that

Pj1j2(Tj1 ⊗ Tj2) = Uj1−j2Pj1j2. (3.6)

So the problem of decomposing the tensor product of two principal series representations
is reduced to that of decomposingUj2−j1.

Let Qz
jε be an operator fromK(X) into Dj defined by

(Qz
jε8)(s) = γ (z, j, ε)

∫
X

8(x)|[x, s]|j−2ε[x, s]2ε([s−αx, s]/[s+αx, s])z/2 dx (3.7)

where8 ∈ K(X), s± = (±1, 0, 1), ε ∈ {0, 1/2}, Rej > |Rez| − 1 andγ (z, j, ε) is given
by

γ (z, j, ε) =
[
0

(
z+ j + 1

2
+ ε

)
0

(−z+ j + 1

2
+ ε

)]−1

. (3.8)

It can be shown that the integral in (3.7) may be continued analytically inj andz to give
the entire function. Moreover,

Qz
jεUz(g) = Tj (g)Qz

jε (3.9)

whereTj (g) is the elementary representation ofG. Therefore, an intertwining operatorCjεj1j2

betweenTj1 ⊗ Tj2(j1, j2 ∈ C) andTj is defined as a composition of mapsQj2−j1
jε andPj1j2

(C
jε

j1j2
f )(u) = γ (j2− j1, j, ε)

∫
S1×S1

Kε(j1s, j2t; ju)f (s, t)ds dt. (3.10)

Here

Kε(j1s, j2t; ju) = 2−1−((j1+j2)/2)

∣∣∣∣ sin
ϕ1− ϕ

2

∣∣∣∣−2a1

sign2ε sin
ϕ1− ϕ

2

∣∣∣∣ sin
ϕ − ϕ2

2

∣∣∣∣−2a2

×sign2ε sin
ϕ − ϕ2

2

∣∣∣∣ sin
ϕ1− ϕ2

2

∣∣∣∣−2a

sign2ε sin
ϕ1− ϕ2

2
(3.11)
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wheres = (cosϕ1, sinϕ1, 1), t = (cosϕ2, sinϕ2, 1), u = (cosϕ, sinϕ, 1) and

−2a = −2− j1− j2− j − 2a1 = z+ j − 2a2 = −z+ j z = j2− j1.

(3.12)

The mapCjεj1j2
induces a unitary operator fromL2(S1×S1) into a direct integral of Hilbert

spaces supporting the unitary representationsTiρ−1/2 andT +l ⊕ T −l (see later). Therefore,
in the case when the two representations both belong to the principal series, the structure
of the CG series is given by

Tiρ1−1/2⊗ Tiρ2−1/2 = 2
∫ ∞

0
T−(1/2)+iρ dρ ⊕

∞∑
l=0

(T +l ⊕ T −l ). (3.13)

In other words, the tensor product contains two copies of the principal series and one of
each discrete series representations.

The space of operatorC iρ−1/2,ε
iρ1−1/2,iρ2−1/2 intertwining Tiρ1−1/2⊗ Tiρ2−1/2 andTiρ−1/2

C
iρ−1/2,ε
iρ1−1/2,iρ2−1/2(Tiρ1−1/2⊗ Tiρ2−1/2(g)) = Tiρ−1/2(g)C

iρ−1/2,ε
iρ1−1/2,iρ2−1/2 (3.14)

is two-dimensional, whereε = 0, 1/2 is the multiplicity label.
The Fourier components of the functionf ∈ L2(S1 × S1) corresponding to the

representation of the positive and negative discrete series are given by the unitary operators
Cl+iρ1−1/2,iρ2−1/2 andCl−iρ1−1/2,iρ2−1/2, l = 0, 1, 2, . . ., respectively

(Cl±j1j2
f )(u) =

∫
S1×S1

K±(j1s, j2t; lu)f (s, t)ds dt (3.15)

where

K±(j1s, j2t; lu) = 1

2

1/2∑
ε=0

[1+ (−1)l+2ε e±iπ(j2−j1)]Kε(j1s, j2t; lu). (3.16)

The following relation holds

Cl±iρ1−1/2,iρ2−1/2(Tiρ1−1/2⊗ Tiρ2−1/2(g)) = T ±l (g)Cl±iρ1−1/2 iρ2−1/2. (3.17)

Furthermore, we have the Plancherel formula∫
S1×S1

|f (s, t)|2 ds dt =
1/2∑
ε=0

∫ ∞
0
ω(iρ − 1

2, ε)‖C iρ−1/2,ε
iρ1−1/2,iρ2−1/2f ‖Hiρ−1/2 dρ

+
∞∑
l=0

ωl,ε{‖Cl+iρ1−1/2,iρ2−1/2f ‖H+l + ‖Cl−iρ1−1/2,iρ2−1/2f ‖H−l } (3.18)

where the norms come from the scalar products (2.6), (2.10) and (2.11); the Plancherel
weightsω(iρ − 1

2, ε) andωl,ε are defined by

ω(iρ − 1
2, ε) = (8π2)−1ρthπρ|γ (iρ2− iρ1, iρ − 1

2, ε)|2 (3.19)

and

ωlε = 2−2l−4π−2(2l + 1){γ (iρ2− iρ1, l, ε)γ (iρ2− iρ1,−l, ε)}−1 (3.20)

with l = 0, 1, . . ., where the parameterε in (3.20) may be any number from{0, 1/2} if
ρ1 6= ρ2 andε ≡ l + 1(mod2) only if ρ1 = ρ2; the functionγ is given by (3.8).
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By applying both sides of (3.14) to basis vectors (3.2) we obtain
∞∑

m′1,m
′
2=−∞

C
iρ−1/2,ε
iρ1−1/2,iρ2−1/2(m

′;m′1, m′2)t iρ1−1/2
m′1m1

(g)t
iρ2−1/2
m′2m2

(g)

=
∞∑

m=−∞
t

iρ−1/2
m′m (g)C

iρ−1/2,ε
iρ1−1/2,iρ2−1/2(m;m1, m2) (3.21)

where

C
iρ−1/2,ε
iρ1−1/2,iρ2−1/2(m;m1, m2) ≡ (C iρ−1/2,ε

iρ1−1/2,iρ2−1/2f
iρ1−1/2,iρ2−1/2
m1m2

, f iρ−1/2
m )iρ−1/2 (3.22)

are the CG coefficients for the irreducible component belonging to the principal series
representations and

t
iρ−1/2
m′m (g) ≡ (Tiρ−1/2(g)f

iρ−1/2
m′ , f iρ−1/2

m )iρ−1/2

are the matrix elements of the principal unitary series representations of the groupG. In
deriving equation (3.21), we have used the relation

t
iρ1−1/2
m′1m1

(g)t
iρ2−1/2
m′2m2

(g) = (Tiρ1−1/2⊗ Tiρ2−1/2(g)f
iρ1−1/2,iρ2−1/2
m1m2

, f
iρ1−1/2,iρ2−1/2
m′1m

′
2

)iρ1−1/2,iρ2−1/2

where(, )iρ1−1/2,iρ2−1/2 is the scalar product inL2(S1× S1).
Taking into account the expression forf iρ1−1/2,iρ2−1/2

m1m2 andf iρ−1/2
m and that(, )iρ−1/2 is

defined by equation (2.6), the CG coefficientsciρ−1/2,ε
iρ1−1/2,iρ2−1/2(m;m1, m2), after (3.22), can

be written as

C
j

j1j2
(m;m1, m2) = 1

(2π)3/2

[
0(−j1+m1)0(−j2+m2)0(1+ j +m)
0(1+ j1+m1)0(1+ j2+m2)0(−j +m)

]1/2

×
∫ ∫ 2π

0

∫
Kε(j1s, j2t; ju) exp(im1ϕ1+ im2ϕ2− imϕ) dϕ1 dϕ2 dϕ. (3.23)

Analogously one finds from (3.17) that
∞∑

m′1,m
′
2=−∞

C
l+
iρ1−1/2,iρ2−1/2(m

′;m′1, m′2)t iρ1−1/2
m′1m1

(g)t
iρ2−1/2
m′2m2

(g)

=
∞∑

m=l+1

t
l+
m′m(g)C

l+
iρ1−1/2,iρ2−1/2(m;m1, m2)

∞∑
m′1,m

′
2=−∞

C
l−
iρ1−1/2,iρ2−1/2(m

′;m′1, m′2)t iρ1−1/2
m′1m1

(g)t
iρ2−1/2
m′2m2

(g)

=
−l−1∑
m=−∞

t
l−
m′m(g)C

l−
iρ1−1/2,iρ2−1/2(m;m1, m2)

where

C
l+
iρ1−1/2,iρ2−1/2(m;m1, m2) = (Cl+iρ1−1/2,iρ2−1/2f

iρ1−1/2,iρ2−1/2
m1m2

, f l+m )l+

and

C
l−
iρ1−1/2,iρ2−1/2(m;m1, m2) = (Cl−iρ1−1/2,iρ2−1/2f

iρ1−1/2,iρ2−1/2
m1m2

, f l−m )l−

are CG coefficients for the irreducible component belonging to positive and negative series
representations, respectively, and

t
l±
m′m(g) ≡ (T ±l (g)f l±m , f l±m′ )l±
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are the matrix elements of the positive (negative) series representations ofG. Hence, we
have the following integral representation forcl±iρ1−1/2,iρ2−1/2(m;m1, m2)

C
l+
j1j2
(m;m1, m2) = 1

(2π)3/2

[
0(−j1+m1)0(−j2+m2)0(1+ l +m)
0(1+ j1+m1)0(1+ j2+m2)0(−l −m)

]1/2

×
∫ ∫ 2π

0

∫
K+(j1s, j2t; lu) eim1ϕ1+im2ϕ2−imϕ dϕ1 dϕ2 dϕ (3.24)

C
l−
j1j2
(m;m1, m2) = 1

(2π)3/2

[
0(−j1+m1)0(−j2+m2)0(1+ l −m)
0(1+ j1+m1)0(1+ j2+m2)0(−l −m)

]1/2

×
∫ ∫ 2π

0

∫
K−(j1s, j2t; lu) eim1ϕ1+im2ϕ2−imϕ dϕ1 dϕ2 dϕ. (3.25)

Furthermore, we have the following completeness relation for CG coefficients

δm1m
′
1
δm2m

′
2
=

1/2∑
ε=0

∫ ∞
0
ω(iρ − 1

2, ε)C
iρ−1/2,ε

iρ1−1/2,iρ2− 1
2

(m;m1, m2)C
iρ−1/2,ε
iρ1−1/2,iρ2−1/2(m;m′1, m′2)

+
∞∑
l=0

ωlε

( ∞∑
m=l+1

C
l+
iρ1−1/2,iρ2−1/2(m;m1, m2)C

l+
iρ1−1/2,iρ2−1/2(m;m′1, m′2)

+
−j−1∑
m=−∞

C
l−
iρ1−1/2,iρ2−1/2(m;m1, m2)C

l−
iρ1−1/2,iρ2−1/2(m;m′1, m′2)

)
(3.26)

whereω(iρ − 1/2, ε) andωlε are given by (3.19) and (3.20), respectively.
Let us calculate the CG coefficient for the case of three principal series. In order to

compute integrals in (3.23) we use the Fourier expansion∣∣∣∣ sin
ϕ

2

∣∣∣∣−2a

sign2ε sin
ϕ

2
=

∞∑
n=−∞

An ei(n+ε)ϕ 06 ϕ < 2π (3.27)

where

An = 1

2

∫ 2π

0

∣∣∣∣ sin
ϕ

2

∣∣∣∣−2a

sign2ε sin
ϕ

2
e−i(n+ε)ϕ dϕ = 1√

π

×e−iπε 0(
1
2 − a + ε)
0(a + ε)

0(a + n+ ε)
0(1− a + n+ ε) (3.28)

(see formulae (3.631.1) and (3.631.8) from [14]). Hence, it follows that

C
j,ε

j1j2
(m;m1, m2) = 2−1+j−(j1+j2)/2γ (j2− j1, j, ε)

×eiπε 0(
1
2 − a1+ ε)0( 1

2 − a2+ ε)0( 1
2 − a3+ ε)

0(a1+ ε)0(a2+ ε)0(a3+ ε)

×
[
0(−j1+m1)0(−j2+m2)0(1+ j +m)
0(1+ j1+m1)0(1+ j2+m2)0(−j −m)

]1/2

S (3.29)

where

S =
∞∑

n=−∞

0(a1+m1+ ε + n)0(a2−m2+ ε + n)0(a3+ ε + n)
0(1− a1+m1+ ε + n)0(1− a2−m2+ ε + n)0(1− a3+ ε + n) . (3.30)
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Table 1. The expressions forα andβ in terms ofj1, j2, j,m1, m2, andm.

α012= −j2 +m2 α024= −1− j1 − j2 − j α123= 1+ j +m α145= 1+ j1 + j2 − j
α013= 1+ j1 − j2 + j α025= −j1 −m1 α124= −j +m α234= −j1 +m1

α014= j1 − j2 − j α034= −j2 −m2 α125= 1+ j2 +m2 α235= 1− j1 + j2 + j
α015= 1+ j1 −m1 α035= 1+ j −m α134= 1+ j1 +m1 α245= −j1 + j2 − j
α023= −j1 − j2 + j α045= −j −m α135= 2+ j1 + j2 + j α345= 1+ j2 −m2

β01 = −j1 − j2 −m β05 = −2j2 β15 = 1+ j1 − j2 +m β34 = 2+ 2j
β02 = 1+ j1 − j2 −m β12 = 2+ 2j1 β23 = −j1 − j +m2 β35 = 1− j2 + j +m1

β03 = −j2 − j −m1 β13 = 1+ j1 − j +m2 β24 = 1− j1 + j +m2 β45 = −j2 − j +m1

β04 = 1− j2 + j −m1 β14 = 2+ j1 + j +m2 β25 = −j1 − j2 +m2

Calculation of the sum (3.30) proceeds as in the previous paper [7] (see appendix A).
As a result the sum (3.30) is expressed in terms of the generalized hypergeometric function
3F2 with unit argument

S = π
{

cotπ

(
j1− j2− j

2
+m1+ ε

)
0(−j1+ j2−m)0(1+ j2+ j −m1)

0(−j1+ j2+ j)0(1+ j −m)0(−j1−m1)

×3F2

[
j1− j2− j,−j +m, 1+ j1+m1;

1
1+ j1− j2+m,−j2− j +m1;

]

+ cotπ

(−j1+ j2− j
2

−m2+ ε
)

× 0(j1− j2+m)0(1+ j1+ j +m2)

0(1+ j1− j2+ j)0(1+ j +m)0(−j2+m2)

×3F2

[−j1+ j2− j,−j −m2, 1+ j2−m2;
1

1− j1+ j2+m,−j1− j −m2;

]

+ cotπ

(
2+ j1+ j2+ j

2
+ ε

)
× 0(−1− j2− j +m1)0(−1− j1− j −m2)

0(−1− j1− j2− j)0(−j2−m2)0(−j1+m1)

×3F2

[ 2+ j1+ j2+ j, 1+ j2+m2, 1+ j1−m1;
1

2+ j2+ j −m1, 2+ j1+ j +m2;

]}
. (3.31)

There are two-term and three-term relations between the series3F2(1). These relations
were derived by Thomae and are investigated in more familiar notation by Whipple [15]
(see appendix B). For our purpose we express the Whipple parametersri , i = 0, 1, . . . ,5,
in terms ofj1, j2, j,m1, m2 andm as in [5]

3r0 = − 3
2 − 3j2−m1−m 3r1 = 3

2 + 3j1+m2+m 3r2 = − 3
2 − 3j1+m2+m

3r3 = 3
2 + 3j +m1−m2 3r4 = − 3

2 − 3j +m1−m2 3r5 = 3
2 + 3j2−m1−m.

(3.32)

In table 1 the relationships between the set (αlmn, βmn) and the set (j1, j2, j,m1, m2, m) are
given explicitly.
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As a result the sumS can be rewritten in terms of the Whipple functions

S = π30(α023)

{
cotπ((α135/2)− β54+ ε)

sinπβ15 sinπβ45

Fp(5; 1, 4)

0(α235)0(α035)0(α025)

+cotπ((α135/2)− β14+ ε)
sinπβ51 sinπβ41

Fp(1; 4, 5)

0(α023)0(α123)0(α012)

+cotπ((α135/2)+ ε)
sinπβ54 sinπβ14

Fp(4; 1, 5)

0(α024)0(α034)0( α234)

}
. (3.33)

By using three-term relations from appendix B the CG coefficients can be expressed in
terms of two hypergeometric functions3F2(1) with unit argument. For example, by virtue
of equality (B.9) (see appendix B)

sinπβ14Fp(5)

0(α235)0(α035)0(α025)
+ sinπβ45Fp(1)

0(α013)0(α123)0(α012)
+ sinπβ51Fp(4)

0(α024)0(α034)0(α234)
= 0 (3.34)

the CG coefficient can be written in the form

C
jε

j1j2
(m;m1, m2) = δm,m1+m2 eiπ(m−ε)(2π)3/2γ21+(j1+j2)/2

[
0(α234)0(α012)0(α123)

0(α134)0(α125)0(α124)

]1/2

×0(α235)0(α023)

sinπβ14

{
sinπ(β14− (α135/2)+ ε) 0(α013)Fp(4)

0(α034)0(α234)

+ sinπ((α135/2)+ ε) 0(α024)Fp(1)

0(α123)0(α012)

}
. (3.35)

By using the relations from appendix B one can find a large number of other expressions
for the CG coefficients in terms of3F2(1).

It is also worth noting that the formula (3.30) defines the most symmetric expression for
the CG coefficient and it can be written in terms of one special function, namely in terms
of the bilateral series3H3 with unit argument [15] (see appendix C)

S = 0(1− a1+m1+ ε)0(1− a2−m2+ ε)0(1− a + ε)
0(a1+m1+ ε)0(a2−m2+ ε)0(a + ε)

×3H3

[
a1+m1+ ε, a2−m2+ ε, a + ε;

1
1− a1+m1+ ε, 1− a2−m2+ ε, 1− a + ε;

]
. (3.36)

It is evident that the series3H3

[
c1, c2, c3;

1
d1, d2, d3;

]
is not changed under a permutation of

(c1c2c3) or (d1d2d3). This property of3H3(1) implies 3!× 3! = 36 symmetry relations for
CG coefficients which also include (formally) Regge-type symmetry relations. For example,
the replacements

j1→ j1+ j2−m
2

m1→ −j1+ j2+m1−m2

2

j2→ j1+ j2+m
2

m2→ −j1+ j2−m1+m2

2
(3.37)

j1→ j

correspond to

a1+m1→ a2−m2 1− a1+m1→ 1− a1−m1

a2−m2→ a1+m1 1− a2−m2→ 1− a2−m2 (3.38)

a→ a.
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A complete discussion of the symmetry properties of CG coefficients is not attempted here.
The expression for CG coefficients, which couples two principal series into a

representation of the positive (negative) discrete representation, are analysed in the same
way. We have

C
l+
j1j2
(m;m1, m2) = δm,m1+m2 eiπ(m1+(α245/2))(2π)3/221+(j1+j2)/2

[
0(α234)0(α012)0(α123)

0(α134)0(α123)0(α124)

]1/2

×0(α235)0(α024)0(α023)

0(α123)0(α012)
Fp(1) (3.39)

with l = 0, 1, 2, . . ., m = l + 1, l + 2, . . . and

C
l−
j1j2
(m;m1, m2) = δm,m1+m2 eiπ(m2+(α014/2))(2π)3/221+(j1+j2)/2

[
0(α234)0(α012)0(α035)

0(α134)0(α125)0(α045)

]1/2

×0(α013)0(α024)0(α023)

0(α035)0(α025)
Fp(5) (3.40)

with l = 0, 1, 2, . . ., m = −l − 1,−l − 2, . . ..
In deriving (3.39) and (3.40) we have used the fact that the three-term relations between

3F2(1) functions reduce to two-term relations when one of the parametersαlmn is a negative
integer or zero, namelyα035= 1+ l −m 6 0 (α123= 1+ l +m 6 0).

4. The tensor product of a complementary series representation with a representation
of the principal series

Let Hτ1,iρ2−1/2 be the Hilbert space completion ofC∞(S1 × S1) with respect to the norm
defined in terms of the scalar product [10, 11]

(f1, f2)τ1,iρ2−1/2 = 2τ1

√
π

0(τ1+ 1)

0(−(2τ1+ 1)/2)

∫
S1×S1×S1

[s1, s2]−1−τ1f1(s1, t)f2(s2, t)ds1 ds2 dt

(4.1)

wheref1, f2 ∈ C∞(S1×S1) and [, ] is given by the formula (2.1). The functionsf τ1,iρ2−1/2
m1m2

f τ1,iρ2−1/2
m1m2

(s, t) = 1

2π

[
0(−τ1+m1)0(

1
2 − iρ2+m2)

0(1+ τ1+m1)0(
1
2 + iρ2+m2)

]1/2

eim1ϕ1+im2ϕ2 (4.2)

with s = (cosϕ1, sinϕ1, 1) and t = (cosϕ2, sinϕ2, 1), form the orthonormal basis in
Hτ1,iρ2−1/2. The tensor productTτ1 ⊗ Tiρ2−1/2 of a complementary series representation
Tτ1,−1< τ1 < −1/2, with a representationTiρ2−1/2, ρ2 > 0, of the principal series can be
realized in the Hilbert spaceHτ1,iρ2−1/2. At j1 = τ1 andj2 = −1/2+ iρ2 the formula (3.3)
gives the representation operator in this case.

Let Fτ1,iρ2−1/2 be the Hilbert space completion ofK(X) with respect to the scalar product

(81,82)τ1,iρ2−1/2 =
∫
X

81(x)Bτ1,iρ2−1/2(Uiρ2−τ1−1/2(αx)82) dx

where81, 82 ∈ K(X) andBτ1,iρ2−1/2 is the generalized function onX

Bτ1,iρ2−1/2(8) = 2τ1

√
π

0(τ1+ 1)

0(−(2τ1+ 1)/2)

∫ ∞
−∞
(q2+ 1)(2τ1+2iρ2+1)/4|q|2τ1−28(1, q, q)dq.

The operatorPτ1,iρ2−1/2 establishes the unitary equivalence betweenTτ1 ⊗ Tiρ2−1/2 and a
unitary representation ofG acting in the spaceFτ1,iρ2−1/2, which is obtained by extension
of the representationUiρ2−τ1−1/2.
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Furthermore, the intertwining mapping given by (3.7) induces a unitary operator from
Fτ1,iρ2−1/2 into a direct integral of the carrier spaces ofTiρ−1/2 and T +l ⊕ T −l . Thus, the
tensor productTτi ⊗ Tiρ2−1/2 contains two copies of a direct integral plus a direct sum of
discrete series representations

Tτ1 ⊗ Tiρ2−1/2 = 2
∫ ∞

0
T−1/2+iρ dρ ⊕

∞∑
l=0

(T +l ⊕ T −l ). (4.3)

At j1 = τ1 and j2 = −1/2+ iρ2 the formulae (3.10) and (3.15) give this decomposition
and the following relations hold

C
iρ−1/2,ε
τ1,iρ2−1/2(Tτ1 ⊗ Tiρ2−1/2)(g) = Tiρ−1/2(g)C

iρ−1/2,ε
τ1,iρ2−1/2 (4.4)

Cl±τ1,iρ2−1/2(Tτ1 ⊗ Tiρ2−1/2)(g) = T ±l (g)Cl±τ1,iρ2−1/2. (4.5)

The corresponding Plancherel formula is given by

2τ1

√
π

0(τ1+ 1)

0(−(2τ1+ 1)/2)

∫
S1×S1×S1

[s1, s2]−1−τ1f1(s1, t)f2(s2, t)ds1 ds2 dt

=
∫ ∞

0

1/2∑
ε=0

ω(− 1
2 + iρ, ε)‖C−1/2+iρ,ε

τ1,iρ2−1/2f ‖Hiρ−1/2 dρ

+
∞∑
l=0

ωl,ε{‖Cl+τ1,iρ2−1/2f ‖H+l + ‖C
l−
τ1,iρ2−1/2f ‖H−l }. (4.6)

Hereω(iρ − 1/2, ε) andωl,ε are defined by

ω(iρ − 1/2, ε) = 2τ1−7/2π−3/2ρthπρ1(τ1, iρ2− 1/2, iρ − 1/2) (4.7)

and

ωl,ε = 2−7/2−lπ−2l!(2l + 1)
1

0(1+ j1)
1(τ1, iρ2− 1/2, l) (4.8)

where

1(j1, j2, j) = 0
(
j1+ j2− j + 2ε + 1

2

)
0

(
j1− j2− j + 2ε

2

)
×0

(
j1+ j2+ j + 2ε + 1

2

)
0

(
j1− j2+ j + 2ε + 1

2

)
. (4.9)

(In equation (4.8) the parameterε may be any number from{0, 1/2}.)
It follows from (4.4) and (4.5) that the following relations between CG coefficients and

the matrix elements of UIRs hold
∞∑

m′1,m
′
2=−∞

C
iρ−1/2,ε
τ1,iρ2−1/2(m

′;m′1, m′2)tτ1

m′1m1
(g)t

iρ2−1/2
m′2,m2

(g)

=
∞∑

m=−∞
t

iρ−1/2
m′m (g)C

iρ−1/2
τ1,iρ2−1/2(m;m1, m2) (4.10)

∞∑
m′1,m

′
2=−∞

C
l+
τ1,iρ2−1/2(m

′;m′1, m′2)tτ1

m′1m1
(g)t

iρ2−1/2
m′2m2

(g)

=
∞∑

m=l+1

t
l+
m′m(g)C

l+
τ1,iρ2−1/2(m;m1, m2) (4.11)
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∞∑
m′1,m

′
2=−∞

C
l−
τ1,iρ2−1/2(m

′;m′1, m′2)tτ1

m′1m1
(g)t

iρ2−1/2
m′2m2

(g)

=
−l−1∑
m=−∞

t
l−
m′m(g)C

l−
τ1,iρ2−1/2(m;m1, m2) (4.12)

where

C
iρ−1/2,ε
τ1,iρ2−1/2(m;m1, m2) ≡ (C iρ−1/2,ε

τ1,iρ2−1/2f
τ1,iρ2−1/2
m1m2

, f iρ−1/2
m )iρ−1/2 (4.13)

Cl±τ1,iρ2−1/2(m;m1, m2) ≡ (Cl±τ1,iρ2−1/2f
τ1,iρ2−1/2
m1m2

, f l±m )l± (4.14)

are the CG coefficients of the tensor productTτ1 ⊗ Tiρ2−1/2.
Furthermore, we have the following completeness relation∫ ∞

0

1/2∑
ε=0

∞∑
m=−∞

ω(iρ − 1/2, ε)C iρ−1/2,ε
τ1,iρ2−1/2(m;m1, m2)C

iρ−1/2,ε
τ1,iρ2−1/2(m;m′1, m′2)

+
∞∑
l=0

ωl,ε

( ∞∑
m=l+1

C
l+
τ1,iρ2−1/2(m;m1, m2)C

l+
τ1,iρ2−1/2(m;m′1, m′2)

+
−l−1∑
m=−∞

C
l−
τ1,iρ2−1/2(m;m1, m2)C

l−
τ1,iρ2−1/2(m;m′1, m′2)

)
= δm1m

′
1
δm2m

′
2

(4.15)

whereω(iρ − 1/2, ε) andωl,ε are given by (4.7) and (4.8), respectively.
At j1 = τ1,−1 < τ1 < −1/2, andj2 = −1/2+ iρ2 formulae (3.23), (3.24) and (3.25)

((3.35), (3.39) and (3.40)) give corresponding CG coefficients.

5. The tensor product of complementary series representations

The tensor productTτ1 ⊗ Tτ2, −1 < τi < −1/2, i = 1, 2 of complementary series
representations act onHτ1τ2 isomorphic to the Hilbert space completion ofC∞(S1 × S1)

with respect to the scalar product

(f1, f2)τ1τ2 =
2τ1+τ2

π

0(τ1+ 1)0(τ2+ 1)

0(−(2τ1+ 1)/2)0(−(2τ2+ 1)/2)

×
∫
S1×S1×S1×S1

|[s1, s2]|−1−τ1|[t1, t2]|−1−τ2f1(s1, t1)

×f2(s2, t2) ds1 ds2 dt1 dt2 (5.1)

wheref ∈ C∞(S1× S2) and [, ] is given by (2.1).
The functionsf τ1τ2

m1m2
are

f τ1τ2
m1m2

(s, t) = 1

2π

[
0(−τ1+m1)0(−τ2+m2)

0(1+ τ1+m1)0(1+ τ2+m1)

]1/2

eim1ϕ1+im2ϕ2 (5.2)

with s = (cosϕ1, sinϕ1, 1) and t = (cosϕ2, sinϕ2, 1), form the orthonormal basis inHτ1τ2.
At ji = τ1, i = 1, 2, the formula (3.3) gives the representation operator.

Let Fτ1τ2 be the Hilbert space completion ofK(X) with respect to the scalar product

(81,82)τ1τ2 =
∫
X

81(x)Bτ1τ2(Uτ2−τ1(αx)82) dx
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where81,82 ∈ K(X) andBτ1,τ2 is the generalized function onX

Bτ1,τ2(8) =
22τ1+2τ2+2

π

0(τ1+ 1)0(τ2+ 1)

0(−(2τ1+ 1)/2)0(−(2τ2+ 1)/2)

×
∫
X

|[s−, s−αx ]|−τ1−1|[s+, s+αx ]|−τ2−18(x) dx.

The operatorPτ1τ2 establishes the unitary equivalence betweenTτ1 ⊗ Tτ2 and a unitary
representation ofG acting in the spaceFτ1,τ2, which is obtained by extension of the
representationUτ2−τ1.

The mapping given by (3.7) induces a unitary operator fromFτ1,τ2 into a direct integral
of the carrier spaces ofTiρ−1/2 andT +l ⊕ T −l whenτ1+ τ2 > −3/2 andTiρ−1/2, T +l ⊕ T −l
andTτ1+τ2+1, whenτ1+ τ2 < −3/2. Thus, the structure of CG series have the form

(i)

Tτ1 ⊗ Tτ2 = 2
∫ ∞

0
T−1/2+iρ dρ ⊕

∞∑
l=0

(T +l ⊕ T −l ) whenτ1+ τ2 > −3/2 (5.3)

(ii)

Tτ1 ⊗ Tτ2 = 2
∫ ∞

0
T−1/2+iρ dρ ⊕

∞∑
l=0

(T +l ⊕ T −l )⊕ Tτ1+τ2+1 whenτ1+ τ2 < −3/2.

(5.4)

In case (ii) Hτ1τ2 contains a sub-space which is isomorphic to one copy of the
complementary series representationTτ1+τ2+1.

In both cases formulae (3.10) and (3.15) at

ji = τi j2 = τ2 (5.5)

define the Fourier components corresponding to the representations of the principal and
discrete series, respectively. For the Fourier component transformed according to the
complementary series representationTτ1+τ2+1 it is also necessary to put

j = τ1+ τ2+ 1 ε = 0 (5.6)

in formula (3.10). We have the equalities

C iρ−1/2,ε
τ1τ2

(Tτ1 ⊗ Tτ2)(g) = Tiρ−1/2(g)C
iρ−1/2,ε
τ1τ2

(5.7)

Cl±τ1τ2
(Tτ1 ⊗ Tτ2)(g) = T l±l (g)Cl±τ1τ2

(5.8)

Cτ1+τ2+1,0
τ1τ2

(Tτ1 ⊗ Tτ2)(g) = Tτ1+τ2+1(g)C
τ1+τ2+1,0
τ1τ2

. (5.9)

The Plancherel formula for the tensor product of two complementary series
representations is defined by

2τ1+τ2

π

0(τ1+ 1)0(τ2+ 1)

0(−(2τ1+ 1)/2)0(−(2τ2+ 1)/2)

×
∫
S1×S1×S1×S1

[s1, s2]−1−τ1[t1, t2]−1−τ2f1(s1, t1)f2(s2, t2) ds1 ds2 dt1 dt2

=
∫ ∞

0

1/2∑
ε=0

ω(iρ − 1/2, ε)‖C iρ−1/2,ε
τ1τ2

f ‖Hiρ−1/2 dρ

+
∞∑
l=0

ωl,ε{‖Cl+τ1τ2
f ‖H+l + ‖Cl−τ1τ2

f ‖H−l } + ω‖Cτ1+τ2+1,0
τ1τ2

f ‖Hτ1+τ2+1 (5.10)
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where the norms correspond to the inner product in the representation spaces of the principal,
discrete and complementary series; the functionsω(iρ − 1/2, ε), ωl,ε, ω are given by

ω(iρ − 1/2, ε) = 2−τ1−τ2−5π−3 tanhπρ[coshπρ + (−1)2ε sinπ(τ1+ τ2)]

×|0( 3
2 + τ1+ τ2+ iρ)|2|γ (τ2− τ1,− 1

2 + iρ, ε)|−2 (5.11)

ωl,ε = 2−τ1−τ2−2l−5π−2(−1)2ε+l+1(2l + 1)0(2+ l + τ1+ τ2)

×{0(l − τ1− τ2)γ (τ2− τ1, l, ε)γ (τ2− τ1,−l − 1, ε)}−1 (5.12)

with l = 0, 1, 2, . . . andε may be any number from{0, 1/2}, if τ1 6= τ2 andε = l+1(mod2)
only if τ1 = τ2

ω =


0 if − 3

26τ1+τ2<−1

2−τ1−τ2−2π−3/20(− 1
2 − τ1)0(− 1

2 − τ2)0(τ1+ 1)

×0(τ2+ 1)0(2+ τ1+ τ2)/0(− 3
2 − τ1− τ2) if τ1+ τ2 < − 3

2.

(5.13)

One can easily derive the following relations between the CG coefficients and the matrix
elements of UIRs
∞∑

m′1m
′
2=−∞

C iρ−1/2,ε
τ1τ2

(m′;m′1, m′2)tτ1

m′1m1
(g)t

τ2

m′2m2
(g)=

∞∑
m=−∞

t
iρ−1/2
m′m (g)C iρ−1/2

τ1,τ2
(m;m1, m2) (5.14)

∞∑
m′1m

′
2=−∞

Cl+τ1τ2
(m′;m′1, m′2)tτ1

m′1m1
(g)t

τ2

m′2m2
(g) =

∞∑
m=l−1

t
l+
m′m(g)C

l+
τ1τ2
(m;m1, m2) (5.15)

∞∑
m′1m

′
2=−∞

Cl−τ1τ2
(m′;m′1, m′2)tτ1

m′1m1
(g)t

τ2

m′2m2
(g) =

−l−1∑
m=−∞

t
l−
m′m(g)C

l−
τ1τ2
(m;m1, m2) (5.16)

∞∑
m′1m

′
2=−∞

Cτ1+τ2+1
τ1τ2

(m′;m′1, m′2)tτ1

m′1m1
(g)t

τ2

m′2m2
(g) =

∞∑
m=−∞

t
τ1+τ2+1
m′m (g)Cτ1+τ2+1

τ1τ2
(m;m1, m2)

(5.17)

where

C iρ−1/2,ε
τ1τ2

(m;m1, m2) = (C iρ−1/2,ε
τ1τ2

f τ1τ2
m1m2

, f iρ2−1/2
m )iρ−1/2 (5.18)

Cl±τ1τ2
(m;m1, m2) = (Cl±τ1τ2

f τ1τ2
m1m2

, f l±m )l± (5.19)

Cτ1+τ2+1
τ1τ2

(m;m1, m2) = (Cτ1+τ2+1,0
τ1τ2

f τ1τ2
m1m2

, f τ1+τ2+1
m )τ1+τ2+1 (5.20)

are the CG coefficients for the tensor productTτ1 ⊗ Tτ2.
It follows from equation (5.8) that∫ ∞

0

1/2∑
ε=0

∞∑
m=−∞

ω(iρ − 1/2)C iρ−1/2,ε
τ1τ2

(m;m1, m2)C
iρ−1/2,ε
τ1τ2 (m;m1, m2)

+
∞∑
l=0

ωl,ε

( ∞∑
m=l+1

Cl+τ1τ2
(m;m1, m2)C

l+
τ1τ2(m;m1, m2)

)

+
−l−1∑
m=−∞

Cl−τ1τ2
(m;m1, m2)C

l−
τ1τ2(m;m1, m2)

+ω
∞∑

m=−∞
Cτ1+τ2+1
τ1τ2

(m;m1, m2)× Cτ1+τ2+1
τ1τ2 (m;m′1, m′2) = δm1m

′
1
δm2m

′
2
. (5.21)
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The integral representations and explicit expressions for the CG coefficients of the tensor
productTτ1 ⊗ Tτ2 can be derived from the corresponding results of section 4 by using the
substitutions (5.5) and (5.6).
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Appendix A. Calculation of the sum (3.30)

Let us consider the integral

Ic = 1

2π i

∫
c

f (z) dz (A.1)

where

f (z) = cotπz
0(a1+m1+ ε + z)0(a2−m2+ ε + z)0(a + ε + z)

0(1− a1+m1+ ε + z)0(a2−m2+ ε + z)0(1− a + ε + z) (A.2)

andC is a circle of radiusR as large as we please avoiding all zeros of sinπ(a1+m1+ε+z)
or sinπ(a2−m2+ε+z) or sinπ(a+ε+z) or sinπz. The series (3.30) is obviously the sum
of f (z) at the polesz = 0,±1,±2, . . ., of cot(πz). By arguments exactly parallel of that
of [16, ch 1.4] we can show that asR→∞, |IC | → 0, provided thatRl(a1+ a2+ a3) < 1.
However, IC is equal to the sum of all residues of the integrand at its poles within the
contour. Thus, the seriesS is equal to minus of the residues at the poles of0(z+a1+m1+ε),
0(z+ a2−m2+ ε) and0(z+ a + ε). Hence, we find

S = π
{

cotπ(a1+m1+ ε) 0(a − a1−m1)0(a2− a1−m)
0(1− 2a1)0(1− a − a1−m1)0(1− a2− a1−m)

×3F2

[ 2a1, a + a1+m1, a2+ a1+m;
1

1− a + a1+m1, 1− a2+ a1+m;

]

+ cotπ(a2−m2+ε) 0(a − a2+m2)0(a1− a2+m)
0(1− 2a2)0(1− a − a2+m2)0(1− a1− a2+m)

×3F2

[ 2a2, a + a2−m2, a2+ a1−m;
1

1− a + a2−m2, 1− a1+ a2−m;

]

+ cotπ(a + ε) 0(a1− a +m1)0(a2− a −m2)

0(1− 2a)0(1− a1− a +m1)0(1− a2− a −m2)

×3F2

[ 2a, a + a1−m1, a + a2+m2;
1

1− a1+ a −m, 1− a2+ a +m2;

]}
(A.3)

where

3F2

[
a, b, c;

z

d, e;

]
=
∞∑
n=o

(a)n(b)n(c)n

(d)n(e)nn!
zn (A.4)

is the generalized hypergeometric function3F2(z). Here (a)n = (0(a + n)/0(a)). The
series3F2(1) is convergent ifRl(d + e − a − b − c) > 0.
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Appendix B. Relation between3F2(1) series

In this appendix we introduce Whipple’s notation (see section 4.3 of [15]). Let
r0, r1, r2, r3, r4, r5 be six parameters such that

5∑
i=0

ri = 0 (B.1)

and let

αlmn = 1/2+ rl + rm + rn βmn = 1+ rm − rn. (B.2)

Note that the coefficientsαlmn are totally symmetric whereasβmn = 2− βnm. The Whipple
functionsFp(l;m, n) andFn(l;m, n) are defined as

Fp(l;m, n) = 1

0(αghj )0(βml)0(βnl)
3F2

[
αgmn, αhmn, αkmn;
βml βnl; 1

]
(B.3)

and

Fn(l;m, n) = 1

0(αlmn)0(βlm)0(βln)
3F2

[
αlhk, αlgk, αlgh;
βlm βln 1

]
(B.4)

with the labels (g, h, k, l, m, n) denoting any permutation of(0, 1, 2, 3, 4, 5). The
convergence condition forFp(l;m, n) is Re(αghj ) > 0 and the convergence condition
for Fn(l;m, n) is Re(αlmn) > 0. We note that anyFn(l;m, n) function is obtained from the
Fp(l;m, n) function by changing the signs of all ther parameters.

The two-term relation between3F2(1) functions can be written in the present notation
as

Fp(l;m, n) = Fp(l;m′, n′) (B.5)

Fn(l;m, n) = Fn(l;m′, n′) (B.6)

for any combination ofl, m, n,m′ andn′. The Whipple functionsFp(l;m, n) andFn(l;m, n)
are thus independent ofm andn and will be denoted byFp(l) andFn(l), respectively.

All the three-term relations possible between 1203F2(1) functions are summed up in
the six relations in Whipple’s notation

sinπβ23

π0(α023)
Fp(0) = Fn(2)

0(α134)0(α135)0(α345)
− Fn(3)

0(α124)0(α125)0(α245)
(B.7)

sinπβ45Fp(0)

0(α012)0(α013)0(α023)
+ sinπβ50Fp(4)

0(α124)0(α134)0(α234)
+ sinπβ54Fp(5)

0(α125)0(α135)0(α235)
= 0 (B.8)

Fp(0)

0(α012)0(α013)0(α024)0(α014)0(α034)
+ sinπβ05Fp(0)

0(α123)0(α124)0(α134)0(α234)
= R0Fp(5) (B.9)

whereπ3R0 = sinπα145sinπα245sinπα345+ sinπα123sinπβ40 sinπβ50 and the relations
which are obtained by changing the signs of all ther ’s.

When one of theαlmn parameters is a negative integer the three-term relations reduce
to two-term relations between 18 terminating Whipple functions. For the case in which
α035= −k, k being a positive integer or zero, one has

0(α014)0(α145)0(α134)Fp(2) = 0(α024)0(α245)0(α234)Fp(1)

= 0(α012)0(α125)0(α123)Fp(4)

= (−1)k0(α014)0(α024)0(α012)Fn(0) (B.10)

= (−1)k0(α134)0(α234)0(α123)Fn(3)

= (−1)k0(α145)0(α245)0(α125)Fn(5).
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Appendix C. Bilateral series

By the bilateral series we mean the series (see [15, ch 6])

AHB

[
c1, c2, . . . , cA;

z

d1, d2, . . . , dB;

]
=

∞∑
n=−∞

(c1)n, (c2)n, . . . , (cA)n

(d1)n, (d2)n, . . . , (dB)n
zn. (C.1)

It hasA numerator parametersc1, c2, . . . , cA, B denominator parametersd1, d2, . . . , dB and
one variablez. The functionAHB(z) is defined for all real and complex values of the
parameters

c1, c2, . . . , cA d1, d2, . . . , dB (C.2)

except zero or integers and for all values of the variablez such that|z| = 1. If z = −1 we
must have

Rl(d1+ d2+ · · · + dB − c1− c2− · · · − cA) > 1 (C.3)

for convergence and ifz = 1

Rl(d1+ d2+ · · · + dB − c1− c2− · · · − cA) > 0. (C.4)

If any one of thec parameters is a negative integer the series terminates above, if any one
of the d parameters is a positive integer the series terminates below. If any one of the
c parameters is a positive integer or if any one of theb parameters is a negative integer the
series is not defined.

There is an interesting general relation betweenA series of the typeAHA(1) (see (6.3.2)
from [15])

A∑
µ=1

0

[
1+ (b)− bµ, bµ − (b)′
1− (d)− bµ, bµ − (c)

]
AHA

[ 1+ (c)− bµ;
1

1+ (d)− bµ;

]
= 0 (C.5)

where it is understood that there areA of theb, c andd parameters, andRl
∑
((d−c)) > 0.

A prime denotes the omission of a zero factor in such a sequence of parameters. For example
bµ − (b)′ indicates the sequencebµ − b1, bµ − b2, . . . , bµ − bµ−1, bµ − bµ+1, . . . , bA.

In particular, ifA = 3, we have

0

[
1+ b2− b1, 1+ b3− b1, b1− b2, b1− b3

1− d1− b1, 1− d2− b1, 1− d3− b1, b1− c1, , b1− c2, b1− c3

]
×3H3

[ 1+ c1− b1, 1+ c2− b1, 1+ c3− b1;
1

1+ d1− b1, 1+ d2− b1, 1+ d3− b1;

]

+0
[

1+ b1− b2, 1+ b3− b2, b2− b1, b2− b3

1− d1− b2, 1− d2− b2, 1− d3− b2, b2− c1, , b2− c2, b2− c3

]
×3H3

[ 1+ c1− b2, 1+ c2− b2, 1+ c3− b2;
1

1+ d1− b2, 1+ d2− b2, 1+ d3− b2;

]

+0
[

1+ b1− b3, 1+ b2− b3, b3− b1, b3− b2

1− d1− b3, 1− d2− b3, 1− d3− b3, b3− c1, , b3− c2, b3− c3

]
×3H3

[ 1+ c1− b3, 1+ c2− b3, 1+ c3− b3;
1

1+ d1− b3, 1+ d2− b3, 1+ d3− b3;

]
(C.6)
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where

0

[
c1, c2, . . . , cA
d1, d2, . . . , dB

]
≡ 0(c1)0(c2) . . . 0(cA)

0(d1)0(d2) . . . 0(dB)
. (C.7)

This is a relation between three3H3(1) series.
It follows from (C.5) that, in the general case, the bilateral seriesAHA(1) with unit

argument can be expressed in terms of the generalized hypergeometric functionAFA−1(1)
with unit argument. In particular, the function3H3(1) is expressed in terms of3F2(1).

Settingb1 = d1, b2 = d2 andb3 = 1, we find
∞∑

n=−∞

0(c1+ n)0(c2+ n)0(c3+ n)
0(d1+ n)0(d2+ n)0(d3+ n) =

π

sinπc1 sinπc2 sinπc3

1

sinπ(d1− d2)

×
{

sinπd2

0(1− d1+ d2)0(1− d1+ d3)0(d1− c1)0(d1− c3)
3F2

×
[ 1+ c1− d1, 1+ c2− d1, 1+ c3− d1;

1
1+ d2− d1, 1+ d3− d1;

]

− sinπd1

0(1+ d1+ d2)0(1+ d3− d2)0(d2− c1)0(d2− c2)0(d2− c3)
3F2

×
[ 1− d2+ c1, 1− d2+ c2, 1− d2+ c3;

1
1+ d1− d2, 1+ d3− d2;

]}
. (C.8)

Thus, we have another proof of the summation formula for the series (3.30). In concluding
this appendix we give a useful formula for calculation of special values of the CG coefficients

3H3

[
b, c, d;

1
1+ a − b, 1+ a − c, 1+ a − d;

]
= [0(1− b)0(1− c)0(1− d)0(1+ a − b)0(1+ a − c)0(1+ a − d)
0(1− 1

2a)0(1+ 1
2a)0(1+ 3

2a − b − c − d)][0(1+ a − c − d)
0(1+ a − b − d)0(1+ a − b − c)0(1+ 1

2a − b)0(1+ 1
2a − c)

0(1+ 1
2a − d)0(1+ a)0(1− a)]−1. (C.9)
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